IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i2p590-621.html
   My bibliography  Save this article

Common ancestor type distribution: A Moran model and its deterministic limit

Author

Listed:
  • Cordero, Fernando

Abstract

In a Moran model with population size N, two types, mutation and selection, let hkN be the probability that the common ancestor is fit, given that the current number of fit individuals is k. First, we express hkN in terms of the tail probabilities of an appropriate random variable LN. Next, we show that, when N tends to infinity (without any rescaling of parameters or time), LN converges to a geometric random variable. We also obtain a formula for h(x), the limit of hkN when k/N tends to x∈(0,1). In a second step, we describe two ways of pruning the ancestral selection graph (ASG) leading to the notions of relevant ASG and of pruned lookdown ASG (pruned LD-ASG). We use these objects to provide graphical derivations of the aforementioned results. In particular, we show that LN is distributed as the asymptotic number of lines in the relevant ASG and as the stationary number of lines in the pruned LD-ASG. Finally, we construct an asymptotic version of the pruned LD-ASG providing a graphical interpretation of the function h.

Suggested Citation

  • Cordero, Fernando, 2017. "Common ancestor type distribution: A Moran model and its deterministic limit," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 590-621.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:2:p:590-621
    DOI: 10.1016/j.spa.2016.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915300296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mano, Shuhei, 2009. "Duality, ancestral and diffusion processes in models with selection," Theoretical Population Biology, Elsevier, vol. 75(2), pages 164-175.
    2. Pokalyuk, Cornelia & Pfaffelhuber, Peter, 2013. "The ancestral selection graph under strong directional selection," Theoretical Population Biology, Elsevier, vol. 87(C), pages 25-33.
    3. Kluth, Sandra & Baake, Ellen, 2013. "The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation," Theoretical Population Biology, Elsevier, vol. 90(C), pages 104-112.
    4. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baake, E. & Esercito, L. & Hummel, S., 2023. "Lines of descent in a Moran model with frequency-dependent selection and mutation," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 409-457.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González Casanova, Adrián & Miró Pina, Verónica & Pardo, Juan Carlos, 2020. "The Wright–Fisher model with efficiency," Theoretical Population Biology, Elsevier, vol. 132(C), pages 33-46.
    2. Wirtz, Johannes & Wiehe, Thomas, 2019. "The Evolving Moran Genealogy," Theoretical Population Biology, Elsevier, vol. 130(C), pages 94-105.
    3. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    4. Bossert, S. & Pfaffelhuber, P., 2018. "The fixation probability and time for a doubly beneficial mutant," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4018-4050.
    5. Kluth, Sandra & Baake, Ellen, 2013. "The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation," Theoretical Population Biology, Elsevier, vol. 90(C), pages 104-112.
    6. Wakeley, John & Sargsyan, Ori, 2009. "The conditional ancestral selection graph with strong balancing selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 355-364.
    7. Pokalyuk, Cornelia & Wakolbinger, Anton, 2020. "Maintenance of diversity in a hierarchical host–parasite model with balancing selection and reinfection," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 1119-1158.
    8. Kobayashi, Yutaka & Wakano, Joe Yuichiro & Ohtsuki, Hisashi, 2018. "Genealogies and ages of cultural traits: An application of the theory of duality to the research on cultural evolution," Theoretical Population Biology, Elsevier, vol. 123(C), pages 18-27.
    9. Baake, E. & Esercito, L. & Hummel, S., 2023. "Lines of descent in a Moran model with frequency-dependent selection and mutation," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 409-457.
    10. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    11. Pokalyuk, Cornelia & Pfaffelhuber, Peter, 2013. "The ancestral selection graph under strong directional selection," Theoretical Population Biology, Elsevier, vol. 87(C), pages 25-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:2:p:590-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.