IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v136y2021icp57-91.html
   My bibliography  Save this article

Dynamics of a Fleming–Viot type particle system on the cycle graph

Author

Listed:
  • Corujo, Josué

Abstract

We study the Fleming–Viot particle process formed by N interacting continuous-time asymmetric random walks on the cycle graph, with uniform killing. We show that this model has a remarkable exact solvability, despite the fact that it is non-reversible with non-explicit invariant distribution. Our main results include quantitative propagation of chaos and exponential ergodicity with explicit constants, as well as formulas for covariances at equilibrium in terms of the Chebyshev polynomials. We also obtain a bound uniform in time for the convergence of the proportion of particles in each state when the number of particles goes to infinity.

Suggested Citation

  • Corujo, Josué, 2021. "Dynamics of a Fleming–Viot type particle system on the cycle graph," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 57-91.
  • Handle: RePEc:eee:spapps:v:136:y:2021:i:c:p:57-91
    DOI: 10.1016/j.spa.2021.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492100017X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cloez, Bertrand & Thai, Marie-Noémie, 2016. "Quantitative results for the Fleming–Viot particle system and quasi-stationary distributions in discrete space," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 680-702.
    2. van Doorn, Erik A. & Pollett, Philip K., 2013. "Quasi-stationary distributions for discrete-state models," European Journal of Operational Research, Elsevier, vol. 230(1), pages 1-14.
    3. Moral, P. Del & Miclo, L., 2000. "A Moran particle system approximation of Feynman-Kac formulae," Stochastic Processes and their Applications, Elsevier, vol. 86(2), pages 193-216, April.
    4. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cloez, Bertrand & Corujo, Josué, 2022. "Uniform in time propagation of chaos for a Moran model," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 251-285.
    2. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    3. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    4. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    5. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    6. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    7. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    8. Frank Hollander & Shubhamoy Nandan, 2022. "Spatially Inhomogeneous Populations with Seed-Banks: I. Duality, Existence and Clustering," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1795-1841, September.
    9. Angeli, Letizia & Grosskinsky, Stefan & Johansen, Adam M., 2021. "Limit theorems for cloning algorithms," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 117-152.
    10. Artalejo, J.R. & Economou, A. & Lopez-Herrero, M.J., 2015. "The stochastic SEIR model before extinction: Computational approaches," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 1026-1043.
    11. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    12. Claude Lefèvre & Matthieu Simon, 2022. "On the Risk of Ruin in a SIS Type Epidemic," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 939-961, June.
    13. Denis Villemonais, 2020. "Lower Bound for the Coarse Ricci Curvature of Continuous-Time Pure-Jump Processes," Journal of Theoretical Probability, Springer, vol. 33(2), pages 954-991, June.
    14. Velleret, Aurélien, 2022. "Unique quasi-stationary distribution, with a possibly stabilizing extinction," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 98-138.
    15. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    16. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts & Andrew Stuart, 2010. "Random‐weight particle filtering of continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 497-512, September.
    17. Griffiths, Robert C. & Jenkins, Paul A. & Spanò, Dario, 2018. "Wright–Fisher diffusion bridges," Theoretical Population Biology, Elsevier, vol. 122(C), pages 67-77.
    18. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    19. Cloez, Bertrand & Thai, Marie-Noémie, 2016. "Quantitative results for the Fleming–Viot particle system and quasi-stationary distributions in discrete space," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 680-702.
    20. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:136:y:2021:i:c:p:57-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.