IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v113y2017icp23-33.html
   My bibliography  Save this article

Rate matrix estimation from site frequency data

Author

Listed:
  • Burden, Conrad J.
  • Tang, Yurong

Abstract

A procedure is described for estimating evolutionary rate matrices from observed site frequency data. The procedure assumes (1) that the data are obtained from a constant size population evolving according to a stationary Wright–Fisher or decoupled Moran model; (2) that the data consist of a multiple alignment of a moderate number of sequenced genomes drawn randomly from the population; and (3) that within the genome a large number of independent, neutral sites evolving with a common mutation rate matrix can be identified. No restrictions are imposed on the scaled rate matrix other than that the off-diagonal elements are positive, their sum is ≪1, and that the rows of the matrix sum to zero. In particular the rate matrix is not assumed to be reversible. The key to the method is an approximate stationary solution to the diffusion limit, forward Kolmogorov equation for neutral evolution in the limit of low mutation rates.

Suggested Citation

  • Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
  • Handle: RePEc:eee:thpobi:v:113:y:2017:i:c:p:23-33
    DOI: 10.1016/j.tpb.2016.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580916300752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2016.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burden, Conrad J. & Tang, Yurong, 2016. "An approximate stationary solution for multi-allele neutral diffusion with low mutation rates," Theoretical Population Biology, Elsevier, vol. 112(C), pages 22-32.
    2. Vogl, Claus, 2014. "Estimating the scaled mutation rate and mutation bias with site frequency data," Theoretical Population Biology, Elsevier, vol. 98(C), pages 19-27.
    3. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    4. Burden, Conrad J. & Simon, Helmut, 2016. "Genetic drift in populations governed by a Galton–Watson branching process," Theoretical Population Biology, Elsevier, vol. 109(C), pages 63-74.
    5. RoyChoudhury, Arindam & Wakeley, John, 2010. "Sufficiency of the number of segregating sites in the limit under finite-sites mutation," Theoretical Population Biology, Elsevier, vol. 78(2), pages 118-122.
    6. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    2. Burden, Conrad J. & Griffiths, Robert C., 2018. "Stationary distribution of a 2-island 2-allele Wright–Fisher diffusion model with slow mutation and migration rates," Theoretical Population Biology, Elsevier, vol. 124(C), pages 70-80.
    3. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.
    2. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    3. Vogl, Claus & Mikula, Lynette Caitlin, 2021. "A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection," Theoretical Population Biology, Elsevier, vol. 139(C), pages 1-17.
    4. Schrempf, Dominik & Hobolth, Asger, 2017. "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 114(C), pages 88-94.
    5. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    6. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    7. Burden, Conrad J. & Tang, Yurong, 2016. "An approximate stationary solution for multi-allele neutral diffusion with low mutation rates," Theoretical Population Biology, Elsevier, vol. 112(C), pages 22-32.
    8. Burden, Conrad J. & Griffiths, Robert C., 2018. "Stationary distribution of a 2-island 2-allele Wright–Fisher diffusion model with slow mutation and migration rates," Theoretical Population Biology, Elsevier, vol. 124(C), pages 70-80.
    9. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    10. Wenkai Huang & Feng Zhan, 2023. "A Novel Probabilistic Diffusion Model Based on the Weak Selection Mimicry Theory for the Generation of Hypnotic Songs," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    11. Vogl, Claus, 2014. "Estimating the scaled mutation rate and mutation bias with site frequency data," Theoretical Population Biology, Elsevier, vol. 98(C), pages 19-27.
    12. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    13. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    14. Burden, Conrad J. & Soewongsono, Albert C., 2019. "Coalescence in the diffusion limit of a Bienaymé–Galton–Watson branching process," Theoretical Population Biology, Elsevier, vol. 130(C), pages 50-59.
    15. Ferretti, Luca & Ramos-Onsins, Sebástian E., 2015. "A generalized Watterson estimator for next-generation sequencing: From trios to autopolyploids," Theoretical Population Biology, Elsevier, vol. 100(C), pages 79-87.
    16. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    17. Möhle, Martin, 2024. "On multi-type Cannings models and multi-type exchangeable coalescents," Theoretical Population Biology, Elsevier, vol. 156(C), pages 103-116.
    18. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    19. Burden, Conrad J. & Wei, Yi, 2018. "Mutation in populations governed by a Galton–Watson branching process," Theoretical Population Biology, Elsevier, vol. 120(C), pages 52-61.
    20. Frank Hollander & Shubhamoy Nandan, 2022. "Spatially Inhomogeneous Populations with Seed-Banks: I. Duality, Existence and Clustering," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1795-1841, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:113:y:2017:i:c:p:23-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.