IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v124y2018icp70-80.html
   My bibliography  Save this article

Stationary distribution of a 2-island 2-allele Wright–Fisher diffusion model with slow mutation and migration rates

Author

Listed:
  • Burden, Conrad J.
  • Griffiths, Robert C.

Abstract

The stationary distribution of the diffusion limit of the 2-island, 2-allele Wright–Fisher with small but otherwise arbitrary mutation and migration rates is investigated. Following a method developed by Burden and Tang (2016, 2017) for approximating the forward Kolmogorov equation, the stationary distribution is obtained to leading order as a set of line densities on the edges of the sample space, corresponding to states for which one island is bi-allelic and the other island is non-segregating, and a set of point masses at the corners of the sample space, corresponding to states for which both islands are simultaneously non-segregating. Analytic results for the corner probabilities and line densities are verified independently using the backward generator and for the corner probabilities using the coalescent.

Suggested Citation

  • Burden, Conrad J. & Griffiths, Robert C., 2018. "Stationary distribution of a 2-island 2-allele Wright–Fisher diffusion model with slow mutation and migration rates," Theoretical Population Biology, Elsevier, vol. 124(C), pages 70-80.
  • Handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:70-80
    DOI: 10.1016/j.tpb.2018.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580918300315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    2. Burden, Conrad J. & Tang, Yurong, 2016. "An approximate stationary solution for multi-allele neutral diffusion with low mutation rates," Theoretical Population Biology, Elsevier, vol. 112(C), pages 22-32.
    3. Schrempf, Dominik & Hobolth, Asger, 2017. "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 114(C), pages 88-94.
    4. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.
    2. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    3. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    4. Schrempf, Dominik & Hobolth, Asger, 2017. "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 114(C), pages 88-94.
    5. Wenkai Huang & Feng Zhan, 2023. "A Novel Probabilistic Diffusion Model Based on the Weak Selection Mimicry Theory for the Generation of Hypnotic Songs," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    6. Burden, Conrad J. & Tang, Yurong, 2016. "An approximate stationary solution for multi-allele neutral diffusion with low mutation rates," Theoretical Population Biology, Elsevier, vol. 112(C), pages 22-32.
    7. Vogl, Claus & Mikula, Lynette Caitlin, 2021. "A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection," Theoretical Population Biology, Elsevier, vol. 139(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:124:y:2018:i:c:p:70-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.