IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v159y2024icp13-24.html
   My bibliography  Save this article

A Wright–Fisher graph model and the impact of directional selection on genetic variation

Author

Listed:
  • Kaj, Ingemar
  • Mugal, Carina F.
  • Müller-Widmann, Rebekka

Abstract

We introduce a multi-allele Wright–Fisher model with mutation and selection such that allele frequencies at a single locus are traced by the path of a hybrid jump–diffusion process. The state space of the process is given by the vertices and edges of a topological graph, i.e. edges are unit intervals. Vertices represent monomorphic population states and positions on the edges mark the biallelic proportions of ancestral and derived alleles during polymorphic segments. In this setting, mutations can only occur at monomorphic loci. We derive the stationary distribution in mutation–selection–drift equilibrium and obtain the expected allele frequency spectrum under large population size scaling. For the extended model with multiple independent loci we derive rigorous upper bounds for a wide class of associated measures of genetic variation. Within this framework we present mathematically precise arguments to conclude that the presence of directional selection reduces the magnitude of genetic variation, as constrained by the bounds for neutral evolution.

Suggested Citation

  • Kaj, Ingemar & Mugal, Carina F. & Müller-Widmann, Rebekka, 2024. "A Wright–Fisher graph model and the impact of directional selection on genetic variation," Theoretical Population Biology, Elsevier, vol. 159(C), pages 13-24.
  • Handle: RePEc:eee:thpobi:v:159:y:2024:i:c:p:13-24
    DOI: 10.1016/j.tpb.2024.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burden, Conrad J. & Tang, Yurong, 2016. "An approximate stationary solution for multi-allele neutral diffusion with low mutation rates," Theoretical Population Biology, Elsevier, vol. 112(C), pages 22-32.
    2. Ferguson, Jake M. & Buzbas, Erkan Ozge, 2018. "Inference from the stationary distribution of allele frequencies in a family of Wright–Fisher models with two levels of genetic variability," Theoretical Population Biology, Elsevier, vol. 122(C), pages 78-87.
    3. Kaj, Ingemar & Mugal, Carina F., 2016. "The non-equilibrium allele frequency spectrum in a Poisson random field framework," Theoretical Population Biology, Elsevier, vol. 111(C), pages 51-64.
    4. Pontz, Martin & Feldman, Marcus W., 2020. "Loss of genetic variation in the two-locus multiallelic haploid model," Theoretical Population Biology, Elsevier, vol. 136(C), pages 12-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    2. Wenkai Huang & Feng Zhan, 2023. "A Novel Probabilistic Diffusion Model Based on the Weak Selection Mimicry Theory for the Generation of Hypnotic Songs," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    3. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.
    4. Schrempf, Dominik & Hobolth, Asger, 2017. "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 114(C), pages 88-94.
    5. Burden, Conrad J. & Griffiths, Robert C., 2018. "Stationary distribution of a 2-island 2-allele Wright–Fisher diffusion model with slow mutation and migration rates," Theoretical Population Biology, Elsevier, vol. 124(C), pages 70-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:159:y:2024:i:c:p:13-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.