IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v78y2010i2p118-122.html
   My bibliography  Save this article

Sufficiency of the number of segregating sites in the limit under finite-sites mutation

Author

Listed:
  • RoyChoudhury, Arindam
  • Wakeley, John

Abstract

We show that the number of segregating sites is a sufficient statistic for the scaled mutation parameter (θ) in the limit as the number of sites tends to infinity and there is free recombination between sites. We assume that the mutation parameter at each site tends to zero such than the total mutation parameter (θ) is constant in the limit. Our results show that Watterson’s estimator is the maximum likelihood estimator in this case, but that it estimates a composite parameter which is different for different mutation models. Some of our results hold when recombination is limited, because Watterson’s estimator is an unbiased, method-of-moments estimator regardless of the recombination rate. The quantity it estimates depends on the details of how mutations occur at each site.

Suggested Citation

  • RoyChoudhury, Arindam & Wakeley, John, 2010. "Sufficiency of the number of segregating sites in the limit under finite-sites mutation," Theoretical Population Biology, Elsevier, vol. 78(2), pages 118-122.
  • Handle: RePEc:eee:thpobi:v:78:y:2010:i:2:p:118-122
    DOI: 10.1016/j.tpb.2010.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580910000468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2010.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos D. Bustamante & Rasmus Nielsen & Stanley A. Sawyer & Kenneth M. Olsen & Michael D. Purugganan & Daniel L. Hartl, 2002. "The cost of inbreeding in Arabidopsis," Nature, Nature, vol. 416(6880), pages 531-534, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vogl, Claus, 2014. "Estimating the scaled mutation rate and mutation bias with site frequency data," Theoretical Population Biology, Elsevier, vol. 98(C), pages 19-27.
    2. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    3. Ferretti, Luca & Ramos-Onsins, Sebástian E., 2015. "A generalized Watterson estimator for next-generation sequencing: From trios to autopolyploids," Theoretical Population Biology, Elsevier, vol. 100(C), pages 79-87.
    4. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    5. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    6. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amei Amei & Stanley Sawyer, 2012. "Statistical Inference of Selection and Divergence from a Time-Dependent Poisson Random Field Model," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    2. Benger, Etam & Sella, Guy, 2013. "Modeling the effect of changing selective pressures on polymorphism and divergence," Theoretical Population Biology, Elsevier, vol. 85(C), pages 73-85.
    3. Rachel A Myers & Ferran Casals & Julie Gauthier & Fadi F Hamdan & Jon Keebler & Adam R Boyko & Carlos D Bustamante & Amelie M Piton & Dan Spiegelman & Edouard Henrion & Martine Zilversmit & Julie Huss, 2011. "A Population Genetic Approach to Mapping Neurological Disorder Genes Using Deep Resequencing," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-10, February.
    4. Kirsten E Eilertson & James G Booth & Carlos D Bustamante, 2012. "SnIPRE: Selection Inference Using a Poisson Random Effects Model," PLOS Computational Biology, Public Library of Science, vol. 8(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:78:y:2010:i:2:p:118-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.