IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v117y2017icp170-183.html
   My bibliography  Save this article

Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology

Author

Listed:
  • Cheng, Yu
  • Huang, Lucheng
  • Ramlogan, Ronnie
  • Li, Xin

Abstract

Disruptive technology introduces new competitive platforms, possesses the ability of initiating new markets, and changes firms' technological competition status. Early identification of candidate application areas will allow for timely adjustment of technology innovation strategies and minimization of risks at firm level. This paper proposes a framework of application areas forecasting process for disruptive technology based on patent data. SIRS epidemic model is analogically introduced by measuring transition velocity of all the entities in the technology diffusion system respectively. We implement the model deterministically to forecast the potential of industrial and technological disruption in the short run, and stochastically to forecast the disruptive technology's major outbreak in candidate application areas in the long run. Radio-frequency identification technology is selected as case study. We conclude by discussing the major outbreak probabilities and potential disruptions of RFID in three different application areas. The results will provide practical suggestion to firms and other stakeholders to facilitate their strategy making when faced with disruptive technologies.

Suggested Citation

  • Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
  • Handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:170-183
    DOI: 10.1016/j.techfore.2016.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516308162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acs, Zoltan J. & Audretsch, David B., 2005. "Entrepreneurship, Innovation and Technological Change," Foundations and Trends(R) in Entrepreneurship, now publishers, vol. 1(4), pages 149-195, November.
    2. Robinson, Douglas K.R. & Huang, Lu & Guo, Ying & Porter, Alan L., 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 267-285.
    3. Lehoux, P. & Daudelin, G. & Williams-Jones, B. & Denis, J.-L. & Longo, C., 2014. "How do business model and health technology design influence each other? Insights from a longitudinal case study of three academic spin-offs," Research Policy, Elsevier, vol. 43(6), pages 1025-1038.
    4. Luigi Orsenigo & Valerio Sterzi, 2010. "Comparative Study of the Use of Patents in Different Industries," KITeS Working Papers 033, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised 2010.
    5. Pulkki-Brännström, Anni-Maria & Stoneman, Paul, 2013. "On the patterns and determinants of the global diffusion of new technologies," Research Policy, Elsevier, vol. 42(10), pages 1768-1779.
    6. Lee, Changyong & Song, Bomi & Park, Yongtae, 2015. "An instrument for scenario-based technology roadmapping: How to assess the impacts of future changes on organisational plans," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 285-301.
    7. Sari, Kazim, 2010. "Exploring the impacts of radio frequency identification (RFID) technology on supply chain performance," European Journal of Operational Research, Elsevier, vol. 207(1), pages 174-183, November.
    8. Ashish Sood & Gerard J. Tellis, 2011. "Demystifying Disruption: A New Model for Understanding and Predicting Disruptive Technologies," Marketing Science, INFORMS, vol. 30(2), pages 339-354, 03-04.
    9. Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
    10. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    11. Massoud Karshenas & Paul L. Stoneman, 1993. "Rank, Stock, Order, and Epidemic Effects in the Diffusion of New Process Technologies: An Empirical Model," RAND Journal of Economics, The RAND Corporation, vol. 24(4), pages 503-528, Winter.
    12. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    13. Hsieh, Chih-Hung, 2013. "Patent value assessment and commercialization strategy," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 307-319.
    14. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 783-832.
    15. Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
    16. Guo, Junfang & Wang, Xuefeng & Li, Qianrui & Zhu, Donghua, 2016. "Subject–action–object-based morphology analysis for determining the direction of technological change," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 27-40.
    17. Hung, Chih-Young & Lee, Wen-Yi, 2016. "A proactive technology selection model for new technology: The case of 3D IC TSV," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 191-202.
    18. Bronwyn H. Hall & Christian Helmers & Mark Rogers & Vania Sena, 2013. "The importance (or not) of patents to UK firms," Oxford Economic Papers, Oxford University Press, vol. 65(3), pages 603-629, July.
    19. David Audretsch, 2004. "Sustaining Innovation and Growth: Public Policy Support for Entrepreneurship," Industry and Innovation, Taylor & Francis Journals, vol. 11(3), pages 167-191.
    20. Momeni, Abdolreza & Rost, Katja, 2016. "Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 16-29.
    21. D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
    22. Reitzig, Markus, 2004. "Improving patent valuations for management purposes--validating new indicators by analyzing application rationales," Research Policy, Elsevier, vol. 33(6-7), pages 939-957, September.
    23. Lars Bo Jeppesen & Karim R. Lakhani, 2010. "Marginality and Problem-Solving Effectiveness in Broadcast Search," Organization Science, INFORMS, vol. 21(5), pages 1016-1033, October.
    24. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2016. "Forecasting technology substitution based on hazard function," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 259-272.
    25. Fahey, Liam & King, William R., 1977. "Environmental scanning for corporate planning," Business Horizons, Elsevier, vol. 20(4), pages 61-71, August.
    26. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    27. Peter Dombrowski & Eugene Gholz, 2009. "Identifying Disruptive Innovation: Innovation Theory and the Defense Industry," Innovations: Technology, Governance, Globalization, MIT Press, vol. 4(2), pages 101-117, April.
    28. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    29. James Bessen & Michael J. Meurer, 2008. "Introduction to Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk," Introductory Chapters, in: Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk, Princeton University Press.
    30. Minna Oinonen & Anne Jalkala & Jari Salo, 2012. "Combining RFID technology with social media marketing - a value network analysis," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 11(4), pages 426-441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    2. Fernanda Momo & Giovana Schiavi & Ariel Behr & Percival Lucena, 2019. "Business Models and Blockchain: What Can Change?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 23(2), pages 228-248.
    3. Kaminski, Jermain & Hopp, Christian & Tykvová, Tereza, 2019. "New technology assessment in entrepreneurial financing – Does crowdfunding predict venture capital investments?," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 287-302.
    4. Martínez-Caro, Eva & Cegarra-Navarro, Juan Gabriel & García-Pérez, Alexeis & Fait, Monica, 2018. "Healthcare service evolution towards the Internet of Things: An end-user perspective," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 268-276.
    5. Antonio, Jerome L. & Kanbach, Dominik K., 2023. "Contextual factors of disruptive innovation: A systematic review and framework," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    6. Sommarberg, Matti & Mäkinen, Saku J., 2019. "A method for anticipating the disruptive nature of digitalization in the machine-building industry," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 808-819.
    7. Chen, Peng-Ting, 2018. "Medical big data applications: Intertwined effects and effective resource allocation strategies identified through IRA-NRM analysis," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 150-164.
    8. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    9. Berg, S. & Wustmans, M. & Bröring, S., 2019. "Identifying first signals of emerging dominance in a technological innovation system: A novel approach based on patents," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 706-722.
    10. Metallo, Concetta & Agrifoglio, Rocco & Schiavone, Francesco & Mueller, Jens, 2018. "Understanding business model in the Internet of Things industry," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 298-306.
    11. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean Michel & Guesmi, Khaled, 2021. "Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    12. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    2. Huang, Ying & Porter, Alan L. & Zhang, Yi & Lian, Xiangpeng & Guo, Ying, 2019. "An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs)," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 831-843.
    3. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    4. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    5. Chan-Yuan Wong & Hon-Ngen Fung, 2017. "Science-technology-industry correlative indicators for policy targeting on emerging technologies: exploring the core competencies and promising industries of aspirant economies," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 841-867, May.
    6. Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    7. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Jing Ma & Alan L. Porter, 2015. "Analyzing patent topical information to identify technology pathways and potential opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 811-827, January.
    9. Guo, Jianfeng & Pan, Jiaofeng & Guo, Jianxin & Gu, Fu & Kuusisto, Jari, 2019. "Measurement framework for assessing disruptive innovations," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 250-265.
    10. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    11. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    12. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    13. Gibson, Elizabeth & Daim, Tugrul U. & Dabic, Marina, 2019. "Evaluating university industry collaborative research centers," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 181-202.
    14. Fischer, Timo & Henkel, Joachim, 2012. "Patent trolls on markets for technology – An empirical analysis of NPEs’ patent acquisitions," Research Policy, Elsevier, vol. 41(9), pages 1519-1533.
    15. Mohd Shadab Danish & Pritam Ranjan & Ruchi Sharma, 2022. "Assessing the Impact of Patent Attributes on the Value of Discrete and Complex Innovations," Papers 2208.07222, arXiv.org.
    16. Useche, Diego, 2014. "Are patents signals for the IPO market? An EU–US comparison for the software industry," Research Policy, Elsevier, vol. 43(8), pages 1299-1311.
    17. Mohd Shadab Danish & Pritam Ranjan & Ruchi Sharma, 2021. "Identification of “Valuable” Technologies via Patent Statistics in India: An Analysis Based on Renewal Information," BASE University Working Papers 13/2021, BASE University, Bengaluru, India.
    18. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    19. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    20. Arora, Sanjay K. & Foley, Rider W. & Youtie, Jan & Shapira, Philip & Wiek, Arnim, 2014. "Drivers of technology adoption — the case of nanomaterials in building construction," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 232-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:170-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.