IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v104y2016icp259-272.html
   My bibliography  Save this article

Forecasting technology substitution based on hazard function

Author

Listed:
  • Jeong, Yujin
  • Park, Inchae
  • Yoon, Byungun

Abstract

The failing to prepare for forecasting along with an excessive focus on incumbent technology may lead to failure in coping with emerging technology. This, in turn, results in entering the market late. Although identifying technology substitution in advance has become increasingly important, there have only been a few attempts to forecast technology substitution. These forecasts have only tried to explain the phenomenon of substitution by focusing on the diffusion of products. Therefore, this paper aims to suggest an approach to forecasting substitution from incumbent technology and emerging technology by applying a hazard rate that originates in equipment placement in reliability engineering. A candidate for emerging technology with a high possibility to substitute existing dominant technology is chosen first. Second, we have developed a model that includes the bathtub-curve to estimate the hazard rate for technologies. This model considers uncertainty, risk, and utility when developing technology. Based on the model, the hazard rate of the dominant technology is estimated by using patent data. After estimating the hazard rate in the form of the bathtub, inflection points and several factors will define an appropriate time point for the substitution. This proposed approach is a novel approach that applies the critical concepts in reliability engineering to technological substitution. Based on a mathematical theory, this method can be used as a decision-making tool for deciding when to develop a technology and apply for patents.

Suggested Citation

  • Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2016. "Forecasting technology substitution based on hazard function," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 259-272.
  • Handle: RePEc:eee:tefoso:v:104:y:2016:i:c:p:259-272
    DOI: 10.1016/j.techfore.2016.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516000159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    2. Farzin, Y. H. & Huisman, K. J. M. & Kort, P. M., 1998. "Optimal timing of technology adoption," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 779-799, May.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Saralees Nadarajah, 2009. "Bathtub-shaped failure rate functions," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 855-863, September.
    5. Doraszelski, Ulrich, 2004. "Innovations, improvements, and the optimal adoption of new technologies," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1461-1480, April.
    6. Zhou, Xiaojun & Xi, Lifeng & Lee, Jay, 2007. "Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 530-534.
    7. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    8. Kamien, Morton I & Schwartz, Nancy L, 1972. "Timing of Innovations Under Rivalry," Econometrica, Econometric Society, vol. 40(1), pages 43-60, January.
    9. Brice Dattée & Henry Weil, 2007. "Dynamics of social factors in technological substitutions," Post-Print hal-02312753, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munan Li & Alan L. Porter, 2018. "Facilitating the discovery of relevant studies on risk analysis for three-dimensional printing based on an integrated framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 277-300, January.
    2. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    3. Noh, Heeyong & Song, Young-Keun & Lee, Sungjoo, 2016. "Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations," Telecommunications Policy, Elsevier, vol. 40(10), pages 956-970.
    4. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    5. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
    6. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Pereira, Cristiano Gonçalves & Lavoie, Joao Ricardo & Garces, Edwin & Basso, Fernanda & Dabić, Marina & Porto, Geciane Silveira & Daim, Tugrul, 2019. "Forecasting of emerging therapeutic monoclonal antibodies patents based on a decision model," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 185-199.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilan Lobel & Jigar Patel & Gustavo Vulcano & Jiawei Zhang, 2016. "Optimizing Product Launches in the Presence of Strategic Consumers," Management Science, INFORMS, vol. 62(6), pages 1778-1799, June.
    2. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    3. Hernández-Mireles, C. & Franses, Ph.H.B.F., 2010. "The Launch Timing of New and Dominant Multigeneration Technologies," ERIM Report Series Research in Management ERS-2010-022-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Ghobadi, Somayeh Najafi- & Bagherinejad, Jafar & Taleizadeh, Ata Allah, 2021. "A two-generation new product model by considering forward-looking customers: Dynamic pricing and advertising optimization," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    5. Donald Lehmann & Mercedes Esteban-Bravo, 2006. "When giving some away makes sense to jump-start the diffusion process," Marketing Letters, Springer, vol. 17(4), pages 243-254, December.
    6. Brozynski, Max T. & Leibowicz, Benjamin D., 2020. "Markov models of policy support for technology transitions," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1052-1069.
    7. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    8. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    9. Avagyan, Vardan & Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2014. "Licensing radical product innovations to speed up the diffusion," European Journal of Operational Research, Elsevier, vol. 239(2), pages 542-555.
    10. Dragan Lazarević & Libor Švadlenka & Valentina Radojičić & Momčilo Dobrodolac, 2020. "New Express Delivery Service and Its Impact on CO 2 Emissions," Sustainability, MDPI, vol. 12(2), pages 1-29, January.
    11. Druehl, Cheryl T. & Schmidt, Glen M. & Souza, Gilvan C., 2009. "The optimal pace of product updates," European Journal of Operational Research, Elsevier, vol. 192(2), pages 621-633, January.
    12. Shun-Chen Niu, 2006. "A Piecewise-Diffusion Model of New-Product Demands," Operations Research, INFORMS, vol. 54(4), pages 678-695, August.
    13. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    14. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2020. "Modeling technology diffusion: a study based on market coverage and advertising efforts," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 154-162, July.
    15. R. Mark Krankel & Izak Duenyas & Roman Kapuscinski, 2006. "Timing Successive Product Introductions with Demand Diffusion and Stochastic Technology Improvement," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 119-135, June.
    16. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    17. Shigeno, Hidenori & Matsuzaki, Taisuke & Ueki, Yasushi & Tsuji, Masatsugu, 2023. "The Effect of the Covid-19 Pandemic on the Innovation Process of Small and Medium-sized Regional Firms," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 278018, International Telecommunications Society (ITS).
    18. Sohn, So Young & Lim, Michael, 2008. "The effect of forecasting and information sharing in SCM for multi-generation products," European Journal of Operational Research, Elsevier, vol. 186(1), pages 276-287, April.
    19. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    20. Marie-Estelle Binet & Lionel Richefort, 2011. "Diffusion of irrigation technologies: the role of mimicking behaviour and public incentives," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 43-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:104:y:2016:i:c:p:259-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.