IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v102y2015i1d10.1007_s11192-014-1392-6.html
   My bibliography  Save this article

Analyzing patent topical information to identify technology pathways and potential opportunities

Author

Listed:
  • Jing Ma

    (Beijing Institute of Technology)

  • Alan L. Porter

    (Georgia Institute of Technology
    Search Technology, Inc.)

Abstract

As a basic knowledge resource, patents play an important role in identifying technology development trends and opportunities, especially for emerging technologies. However patent mining is restricted and even incomplete, because of the obscure descriptions provided in patent text. In this paper, we conduct an empirical study to try out alternative methods with Derwent Innovation Index data. Our case study focuses on nano-enabled drug delivery (NEDD) which is a very active emerging biomedical technology, encompassing several distinct technology spaces. We explore different ways to enhance topical intelligence from patent compilations. We further analyze extracted topical terms to identify potential innovation pathways and technology opportunities in NEDD.

Suggested Citation

  • Jing Ma & Alan L. Porter, 2015. "Analyzing patent topical information to identify technology pathways and potential opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 811-827, January.
  • Handle: RePEc:spr:scient:v:102:y:2015:i:1:d:10.1007_s11192-014-1392-6
    DOI: 10.1007/s11192-014-1392-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1392-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1392-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Douglas K.R. & Huang, Lu & Guo, Ying & Porter, Alan L., 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 267-285.
    2. Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
    3. Janghyeok Yoon & Kwangsoo Kim, 2012. "Detecting signals of new technological opportunities using semantic patent analysis and outlier detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 445-461, February.
    4. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    5. Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
    6. D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Jaemin & Ko, Namuk & Yoon, Janghyeok, 2021. "Inventor group identification approach for selecting university-industry collaboration partners," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    2. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    3. Comins, Jordan A. & Carmack, Stephanie A. & Leydesdorff, Loet, 2018. "Patent citation spectroscopy (PCS): Online retrieval of landmark patents based on an algorithmic approach," Journal of Informetrics, Elsevier, vol. 12(4), pages 1223-1231.
    4. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    5. Ma, Tingting & Zhou, Xiao & Liu, Jia & Lou, Zhenkai & Hua, Zhaoting & Wang, Ruitao, 2021. "Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    6. Zhao Qu & Shanshan Zhang & Chunbo Zhang, 2017. "Patent research in the field of library and information science: Less useful or difficult to explore?," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 205-217, April.
    7. Ma, Jing & Abrams, Natalie F. & Porter, Alan L. & Zhu, Donghua & Farrell, Dorothy, 2019. "Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 767-775.
    8. Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
    9. Won Sang Lee & So Young Sohn, 2017. "Identifying Emerging Trends of Financial Business Method Patents," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    10. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    11. Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.
    12. Choi, Jaewoong & Jeong, Byeongki & Yoon, Janghyeok, 2019. "Technology opportunity discovery under the dynamic change of focus technology fields: Application of sequential pattern mining to patent classifications," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    13. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    14. Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2018. "Knowledge Push Curve (KPC) in retailing: Evidence from patented innovations analysis affecting retailers' competitiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 44(C), pages 150-160.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    2. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
    3. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    4. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    5. Wang, Ming-Yeu & Fang, Shih-Chieh & Chang, Yu-Hsuan, 2015. "Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 182-195.
    6. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    7. Gibson, Elizabeth & Daim, Tugrul U. & Dabic, Marina, 2019. "Evaluating university industry collaborative research centers," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 181-202.
    8. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    9. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    10. Jun, Seung-Pyo & Park, Do-Hyung, 2016. "Consumer information search behavior and purchasing decisions: Empirical evidence from Korea," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 97-111.
    11. M. Lynne Markus & Kevin Mentzer, 2014. "Foresight for a responsible future with ICT," Information Systems Frontiers, Springer, vol. 16(3), pages 353-368, July.
    12. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    13. Kauffman, Robert J. & Liu, Jun & Ma, Dan, 2015. "Innovations in financial IS and technology ecosystems: High-frequency trading in the equity market," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 339-354.
    14. Augustin IGNATOV, 2019. "The role of social media in enhancing the modern market relations," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 11(1), pages 35-54, April.
    15. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    16. Xiao Zhou & Yi Zhang & Alan L. Porter & Ying Guo & Donghua Zhu, 2014. "A patent analysis method to trace technology evolutionary pathways," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 705-721, September.
    17. Li, Munan & Porter, Alan L. & Suominen, Arho, 2018. "Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 285-296.
    18. Huang, Ying & Porter, Alan L. & Cunningham, Scott W. & Robinson, Douglas K.R. & Liu, Jianhua & Zhu, Donghua, 2018. "A technology delivery system for characterizing the supply side of technology emergence: Illustrated for Big Data & Analytics," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 165-176.
    19. Robinson, Douglas K.R. & Lagnau, Axel & Boon, Wouter P.C., 2019. "Innovation pathways in additive manufacturing: Methods for tracing emerging and branching paths from rapid prototyping to alternative applications," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 733-750.
    20. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:102:y:2015:i:1:d:10.1007_s11192-014-1392-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.