Subject–action–object-based morphology analysis for determining the direction of technological change
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2016.01.028
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
- Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
- Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
- Janghyeok Yoon & Kwangsoo Kim, 2012. "Detecting signals of new technological opportunities using semantic patent analysis and outlier detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 445-461, February.
- Hyunseok Park & Janghyeok Yoon & Kwangsoo Kim, 2012. "Identifying patent infringement using SAO based semantic technological similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 515-529, February.
- Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vicente-Gomila, J.M. & Artacho-Ramírez, M.A. & Ting, Ma & Porter, A.L., 2021. "Combining tech mining and semantic TRIZ for technology assessment: Dye-sensitized solar cell as a case," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
- An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
- Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
- Myeongji Oh & Hyejin Jang & Sunhye Kim & Byungun Yoon, 2023. "Main path analysis for technological development using SAO structure and DEMATEL based on keyword causality," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2079-2104, April.
- Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
- Lee, Jiho & Ko, Namuk & Yoon, Janghyeok & Son, Changho, 2021. "An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
- Zhixuan Jia & Wenfang Tian & Wang Li & Kai Song & Fuxin Wang & Congjing Ran, 2024. "Assessing Scientific Text Similarity: A Novel Approach Utilizing Non-Negative Matrix Factorization and Bidirectional Encoder Representations from Transformer," Mathematics, MDPI, vol. 12(21), pages 1-18, October.
- Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
- Ma, Jing & Abrams, Natalie F. & Porter, Alan L. & Zhu, Donghua & Farrell, Dorothy, 2019. "Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 767-775.
- Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
- Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
- Byungun Yoon & Songhee Kim & Sunhye Kim & Hyeonju Seol, 2022. "Doc2vec-based link prediction approach using SAO structures: application to patent network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5385-5414, September.
- Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Yang, Guancan & Xu, Haiyun, 2022. "A deep learning based method benefiting from characteristics of patents for semantic relation classification," Journal of Informetrics, Elsevier, vol. 16(3).
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
- Wang, Jinfeng & Zhang, Zhixin & Feng, Lijie & Lin, Kuo-Yi & Liu, Peng, 2023. "Development of technology opportunity analysis based on technology landscape by extending technology elements with BERT and TRIZ," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
- Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
- Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
- Huang, Ying & Porter, Alan L. & Zhang, Yi & Lian, Xiangpeng & Guo, Ying, 2019. "An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs)," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 831-843.
- Liang Chen & Shuo Xu & Lijun Zhu & Jing Zhang & Xiaoping Lei & Guancan Yang, 2020. "A deep learning based method for extracting semantic information from patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 289-312, October.
- Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
- Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
- Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
- Yoon, Janghyeok & Park, Hyunseok & Seo, Wonchul & Lee, Jae-Min & Coh, Byoung-youl & Kim, Jonghwa, 2015. "Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 153-167.
- Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
- Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
- Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
- Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.
- Seo, Wonchul & Yoon, Janghyeok & Park, Hyunseok & Coh, Byoung-youl & Lee, Jae-Min & Kwon, Oh-Jin, 2016. "Product opportunity identification based on internal capabilities using text mining and association rule mining," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 94-104.
- Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
- Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
- An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
- Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
- Jing Ma & Alan L. Porter, 2015. "Analyzing patent topical information to identify technology pathways and potential opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 811-827, January.
- Farshad Madani, 2015. "‘Technology Mining’ bibliometrics analysis: applying network analysis and cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 323-335, October.
- Hyunseok Park & Janghyeok Yoon & Kwangsoo Kim, 2013. "Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 883-909, December.
- Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
- Woondong Yeo & Seonho Kim & Byoung-Youl Coh & Jaewoo Kang, 2013. "A quantitative approach to recommend promising technologies for SME innovation: a case study on knowledge arbitrage from LCD to solar cell," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 589-604, August.
- Byunghoon Kim & Gianluca Gazzola & Jae-Min Lee & Dohyun Kim & Kanghoe Kim & Myong K. Jeong, 2014. "Inter-cluster connectivity analysis for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1811-1825, March.
- Hei Chia Wang & Yung Chang Chi & Ping Lun Hsin, 2018. "Constructing Patent Maps Using Text Mining to Sustainably Detect Potential Technological Opportunities," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
More about this item
Keywords
Morphology analysis; Subject–action–object (SAO); Technology change; Text mining; Dye-sensitized solar cells (DSSCs);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:105:y:2016:i:c:p:27-40. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.