IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i3p680-702.html
   My bibliography  Save this article

Quantitative results for the Fleming–Viot particle system and quasi-stationary distributions in discrete space

Author

Listed:
  • Cloez, Bertrand
  • Thai, Marie-Noémie

Abstract

We show, for a class of discrete Fleming–Viot (or Moran) type particle systems, that the convergence to the equilibrium is exponential for a suitable Wasserstein coupling distance. The approach provides an explicit quantitative estimate on the rate of convergence. As a consequence, we show that the conditioned process converges exponentially fast to a unique quasi-stationary distribution. Moreover, by estimating the two-particle correlations, we prove that the Fleming–Viot process converges, uniformly in time, to the conditioned process with an explicit rate of convergence. We illustrate our results on the examples of the complete graph and of N particles jumping on two points.

Suggested Citation

  • Cloez, Bertrand & Thai, Marie-Noémie, 2016. "Quantitative results for the Fleming–Viot particle system and quasi-stationary distributions in discrete space," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 680-702.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:3:p:680-702
    DOI: 10.1016/j.spa.2015.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915002446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moral, P. Del & Miclo, L., 2000. "A Moran particle system approximation of Feynman-Kac formulae," Stochastic Processes and their Applications, Elsevier, vol. 86(2), pages 193-216, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corujo, Josué, 2021. "Dynamics of a Fleming–Viot type particle system on the cycle graph," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 57-91.
    2. Cloez, Bertrand & Corujo, Josué, 2022. "Uniform in time propagation of chaos for a Moran model," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 251-285.
    3. Denis Villemonais, 2020. "Lower Bound for the Coarse Ricci Curvature of Continuous-Time Pure-Jump Processes," Journal of Theoretical Probability, Springer, vol. 33(2), pages 954-991, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cloez, Bertrand & Corujo, Josué, 2022. "Uniform in time propagation of chaos for a Moran model," Stochastic Processes and their Applications, Elsevier, vol. 154(C), pages 251-285.
    2. Angeli, Letizia & Grosskinsky, Stefan & Johansen, Adam M., 2021. "Limit theorems for cloning algorithms," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 117-152.
    3. Corujo, Josué, 2021. "Dynamics of a Fleming–Viot type particle system on the cycle graph," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 57-91.
    4. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts & Andrew Stuart, 2010. "Random‐weight particle filtering of continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 497-512, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:3:p:680-702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.