IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v260y2020ics0277953620303919.html
   My bibliography  Save this article

The ethics of AI in health care: A mapping review

Author

Listed:
  • Morley, Jessica
  • Machado, Caio C.V.
  • Burr, Christopher
  • Cowls, Josh
  • Joshi, Indra
  • Taddeo, Mariarosaria
  • Floridi, Luciano

Abstract

This article presents a mapping review of the literature concerning the ethics of artificial intelligence (AI) in health care. The goal of this review is to summarise current debates and identify open questions for future research. Five literature databases were searched to support the following research question: how can the primary ethical risks presented by AI-health be categorised, and what issues must policymakers, regulators and developers consider in order to be ‘ethically mindful? A series of screening stages were carried out—for example, removing articles that focused on digital health in general (e.g. data sharing, data access, data privacy, surveillance/nudging, consent, ownership of health data, evidence of efficacy)—yielding a total of 156 papers that were included in the review.

Suggested Citation

  • Morley, Jessica & Machado, Caio C.V. & Burr, Christopher & Cowls, Josh & Joshi, Indra & Taddeo, Mariarosaria & Floridi, Luciano, 2020. "The ethics of AI in health care: A mapping review," Social Science & Medicine, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:socmed:v:260:y:2020:i:c:s0277953620303919
    DOI: 10.1016/j.socscimed.2020.113172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953620303919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2020.113172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emma Rich & Andy Miah, 2014. "Understanding Digital Health as Public Pedagogy: A Critical Framework," Societies, MDPI, vol. 4(2), pages 1-20, June.
    2. Effy Vayena & Alessandro Blasimme & I Glenn Cohen, 2018. "Machine learning in medicine: Addressing ethical challenges," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-4, November.
    3. Fred S. Lu & Mohammad W. Hattab & Cesar Leonardo Clemente & Matthew Biggerstaff & Mauricio Santillana, 2019. "Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Nic Fleming, 2018. "How artificial intelligence is changing drug discovery," Nature, Nature, vol. 557(7707), pages 55-57, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siala, Haytham & Wang, Yichuan, 2022. "SHIFTing artificial intelligence to be responsible in healthcare: A systematic review," Social Science & Medicine, Elsevier, vol. 296(C).
    2. Kusta, Olsi & Bearman, Margaret & Gorur, Radhika & Risør, Torsten & Brodersen, John Brandt & Hoeyer, Klaus, 2024. "Speed, accuracy, and efficiency: The promises and practices of digitization in pathology," Social Science & Medicine, Elsevier, vol. 345(C).
    3. Castonguay, Alexandre & Wagner, Gerit & Motulsky, Aude & Paré, Guy, 2024. "AI maturity in health care: An overview of 10 OECD countries," Health Policy, Elsevier, vol. 140(C).
    4. Alexandra Brintrup & George Baryannis & Ashutosh Tiwari & Svetan Ratchev & Giovanna Martinez-Arellano & Jatinder Singh, 2023. "Trustworthy, responsible, ethical AI in manufacturing and supply chains: synthesis and emerging research questions," Papers 2305.11581, arXiv.org.
    5. Markov, Iliya & Guglielmetti, Rafael & Laumanns, Marco & Fernández-Antolín, Anna & de Souza, Ravin, 2021. "Simulation-based design and analysis of on-demand mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 170-205.
    6. Wang, Weisha & Wang, Yichuan & Chen, Long & Ma, Rui & Zhang, Minhao, 2024. "Justice at the Forefront: Cultivating felt accountability towards Artificial Intelligence among healthcare professionals," Social Science & Medicine, Elsevier, vol. 347(C).
    7. Hamid Reza Saeidnia & Seyed Ghasem Hashemi Fotami & Brady Lund & Nasrin Ghiasi, 2024. "Ethical Considerations in Artificial Intelligence Interventions for Mental Health and Well-Being: Ensuring Responsible Implementation and Impact," Social Sciences, MDPI, vol. 13(7), pages 1-15, July.
    8. Clement A. Adebamowo & Shawneequa Callier & Simisola Akintola & Oluchi Maduka & Ayodele Jegede & Christopher Arima & Temidayo Ogundiran & Sally N. Adebamowo, 2023. "The promise of data science for health research in Africa," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    2. Mashael Alsobhi & Harpreet Singh Sachdev & Mohamed Faisal Chevidikunnan & Reem Basuodan & Dhanesh Kumar K U & Fayaz Khan, 2022. "Facilitators and Barriers of Artificial Intelligence Applications in Rehabilitation: A Mixed-Method Approach," IJERPH, MDPI, vol. 19(23), pages 1-21, November.
    3. Charlotte Blease & Anna Kharko & Cosima Locher & Catherine M DesRoches & Kenneth D Mandl, 2020. "US primary care in 2029: A Delphi survey on the impact of machine learning," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    4. Lepore, Dominique & Dolui, Koustabh & Tomashchuk, Oleksandr & Shim, Heereen & Puri, Chetanya & Li, Yuan & Chen, Nuoya & Spigarelli, Francesca, 2023. "Interdisciplinary research unlocking innovative solutions in healthcare," Technovation, Elsevier, vol. 120(C).
    5. Hiromitsu Goto & Wataru Souma & Mari Jibu & Yuichi Ikeda, 2020. "Multilayer Network Analysis of the Drug Pipeline in the Global Pharmaceutical Industry," Papers 2003.04620, arXiv.org.
    6. Keding, Christoph & Meissner, Philip, 2021. "Managerial overreliance on AI-augmented decision-making processes: How the use of AI-based advisory systems shapes choice behavior in R&D investment decisions," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    7. Rich, Emma & Lupton, Deborah, 2022. "Rethinking digital biopedagogies: How sociomaterial relations shape English secondary students' digital health practices," Social Science & Medicine, Elsevier, vol. 311(C).
    8. Vaike Fors & Sarah Pink, 2017. "Pedagogy as Possibility: Health Interventions as Digital Openness," Social Sciences, MDPI, vol. 6(2), pages 1-12, June.
    9. Lily Popova Zhuhadar & Miltiadis D. Lytras, 2023. "The Application of AutoML Techniques in Diabetes Diagnosis: Current Approaches, Performance, and Future Directions," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    10. Makarov, Vladimir & Stouch, Terry & Allgood, Brandon & Willis, Christopher & Lynch, Nick, 2020. "Best Practices for Artificial Intelligence in Life Sciences Research," OSF Preprints eqm9j, Center for Open Science.
    11. Delahunty, Fionn & Arcan, Mihael & Johansson, Robert, 2019. "Passive Diagnosis of Mental Health Disorders Incorporating an Empathic Dialogue System," Thesis Commons 98c3q, Center for Open Science.
    12. Carl B. Roth & Andreas Papassotiropoulos & Annette B. Brühl & Undine E. Lang & Christian G. Huber, 2021. "Psychiatry in the Digital Age: A Blessing or a Curse?," IJERPH, MDPI, vol. 18(16), pages 1-32, August.
    13. Deborah Lupton, 2014. "Apps as Artefacts: Towards a Critical Perspective on Mobile Health and Medical Apps," Societies, MDPI, vol. 4(4), pages 1-17, October.
    14. Jeacle, Ingrid & Carter, Chris, 2023. "Calorie accounting: The introduction of mandatory calorie labelling on menus in the UK food sector," Accounting, Organizations and Society, Elsevier, vol. 110(C).
    15. Dessislava Pachamanova & Vera Tilson & Keely Dwyer-Matzky, 2022. "Case Article—Machine Learning, Ethics, and Change Management: A Data-Driven Approach to Improving Hospital Observation Unit Operations," INFORMS Transactions on Education, INFORMS, vol. 22(3), pages 178-187, May.
    16. Michael Gerlich, 2024. "Brace for Impact: Facing the AI Revolution and Geopolitical Shifts in a Future Societal Scenario for 2025–2040," Societies, MDPI, vol. 14(9), pages 1-17, September.
    17. Gilbert Giacomoni, 2022. "Towards a general framework for innovation shaped with AI to create and transform market offerings [Vers un cadre général d’innovation façonné par l’IA pour créer et transformer les offres du march," Post-Print hal-04083376, HAL.
    18. Esra Zihni & Vince Istvan Madai & Michelle Livne & Ivana Galinovic & Ahmed A Khalil & Jochen B Fiebach & Dietmar Frey, 2020. "Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.
    19. Ignat Drozdov & Daniel Forbes & Benjamin Szubert & Mark Hall & Chris Carlin & David J Lowe, 2020. "Supervised and unsupervised language modelling in Chest X-Ray radiological reports," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-16, March.
    20. Zhijuan Song & Xiaocan Jia & Junzhe Bao & Yongli Yang & Huili Zhu & Xuezhong Shi, 2021. "Spatio-Temporal Analysis of Influenza-Like Illness and Prediction of Incidence in High-Risk Regions in the United States from 2011 to 2020," IJERPH, MDPI, vol. 18(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:260:y:2020:i:c:s0277953620303919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.