IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08082-0.html
   My bibliography  Save this article

Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches

Author

Listed:
  • Fred S. Lu

    (Boston Children’s Hospital)

  • Mohammad W. Hattab

    (Harvard Medical School)

  • Cesar Leonardo Clemente

    (Tecnológico de Monterrey)

  • Matthew Biggerstaff

    (Centers for Disease Control and Prevention)

  • Mauricio Santillana

    (Boston Children’s Hospital
    Harvard Medical School)

Abstract

In the presence of health threats, precision public health approaches aim to provide targeted, timely, and population-specific interventions. Accurate surveillance methodologies that can estimate infectious disease activity ahead of official healthcare-based reports, at relevant spatial resolutions, are important for achieving this goal. Here we introduce a methodological framework which dynamically combines two distinct influenza tracking techniques, using an ensemble machine learning approach, to achieve improved state-level influenza activity estimates in the United States. The two predictive techniques behind the ensemble utilize (1) a self-correcting statistical method combining influenza-related Google search frequencies, information from electronic health records, and historical flu trends within each state, and (2) a network-based approach leveraging spatio-temporal synchronicities observed in historical influenza activity across states. The ensemble considerably outperforms each component method in addition to previously proposed state-specific methods for influenza tracking, with higher correlations and lower prediction errors.

Suggested Citation

  • Fred S. Lu & Mohammad W. Hattab & Cesar Leonardo Clemente & Matthew Biggerstaff & Mauricio Santillana, 2019. "Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08082-0
    DOI: 10.1038/s41467-018-08082-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08082-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08082-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canelle Poirier & Yulin Hswen & Guillaume Bouzillé & Marc Cuggia & Audrey Lavenu & John S Brownstein & Thomas Brewer & Mauricio Santillana, 2021. "Influenza forecasting for French regions combining EHR, web and climatic data sources with a machine learning ensemble approach," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-26, May.
    2. Morley, Jessica & Machado, Caio C.V. & Burr, Christopher & Cowls, Josh & Joshi, Indra & Taddeo, Mariarosaria & Floridi, Luciano, 2020. "The ethics of AI in health care: A mapping review," Social Science & Medicine, Elsevier, vol. 260(C).
    3. Zhijuan Song & Xiaocan Jia & Junzhe Bao & Yongli Yang & Huili Zhu & Xuezhong Shi, 2021. "Spatio-Temporal Analysis of Influenza-Like Illness and Prediction of Incidence in High-Risk Regions in the United States from 2011 to 2020," IJERPH, MDPI, vol. 18(13), pages 1-14, July.
    4. Franco Salerno, 2023. "The Greta Thunberg Effect on Climate Equity: A Worldwide Google Trend Analysis," Sustainability, MDPI, vol. 15(7), pages 1-13, April.
    5. Kookjin Lee & Jaideep Ray & Cosmin Safta, 2021. "The predictive skill of convolutional neural networks models for disease forecasting," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08082-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.