IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v296y2022ics0277953622000855.html
   My bibliography  Save this article

SHIFTing artificial intelligence to be responsible in healthcare: A systematic review

Author

Listed:
  • Siala, Haytham
  • Wang, Yichuan

Abstract

A variety of ethical concerns about artificial intelligence (AI) implementation in healthcare have emerged as AI becomes increasingly applicable and technologically advanced. The last decade has witnessed significant endeavors in striking a balance between ethical considerations and health transformation led by AI. Despite a growing interest in AI ethics, implementing AI-related technologies and initiatives responsibly in healthcare settings remains a challenge. In response to this topical challenge, we reviewed 253 articles pertaining to AI ethics in healthcare published between 2000 and 2020, summarizing the coherent themes of responsible AI initiatives. A preferred reporting items for systematic review and meta-analysis (PRISMA) approach was employed to screen and select articles, and a hermeneutic approach was adopted to conduct systematic literature review. By synthesizing relevant knowledge from AI governance and ethics, we propose a responsible AI initiative framework that encompasses five core themes for AI solution developers, healthcare professionals, and policy makers. These themes are summarized in the acronym SHIFT: Sustainability, Human centeredness, Inclusiveness, Fairness, and Transparency. In addition, we unravel the key issues and challenges concerning responsible AI use in healthcare, and outline avenues for future research.

Suggested Citation

  • Siala, Haytham & Wang, Yichuan, 2022. "SHIFTing artificial intelligence to be responsible in healthcare: A systematic review," Social Science & Medicine, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:socmed:v:296:y:2022:i:c:s0277953622000855
    DOI: 10.1016/j.socscimed.2022.114782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953622000855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2022.114782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Effy Vayena & Alessandro Blasimme & I Glenn Cohen, 2018. "Machine learning in medicine: Addressing ethical challenges," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-4, November.
    2. Hui Ma & Xuyang Guo & Yuan Ping & Baocang Wang & Yuehua Yang & Zhili Zhang & Jingxian Zhou, 2019. "PPCD: Privacy-preserving clinical decision with cloud support," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-17, May.
    3. Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
    4. Ritu Agarwal & Michelle Dugas & Guodong (Gordon) Gao & P. K. Kannan, 2020. "Emerging technologies and analytics for a new era of value-centered marketing in healthcare," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 9-23, January.
    5. Morley, Jessica & Machado, Caio C.V. & Burr, Christopher & Cowls, Josh & Joshi, Indra & Taddeo, Mariarosaria & Floridi, Luciano, 2020. "The ethics of AI in health care: A mapping review," Social Science & Medicine, Elsevier, vol. 260(C).
    6. Subrata Chakrabarty & A. Erin Bass, 2015. "Comparing Virtue, Consequentialist, and Deontological Ethics-Based Corporate Social Responsibility: Mitigating Microfinance Risk in Institutional Voids," Journal of Business Ethics, Springer, vol. 126(3), pages 487-512, February.
    7. Liam Drew, 2019. "The ethics of brain–computer interfaces," Nature, Nature, vol. 571(7766), pages 19-21, July.
    8. Wang, Yichuan & Kung, LeeAnn & Byrd, Terry Anthony, 2018. "Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 3-13.
    9. So Young Song & Youn-Kyung Kim, 2018. "Theory of Virtue Ethics: Do Consumers’ Good Traits Predict Their Socially Responsible Consumption?," Journal of Business Ethics, Springer, vol. 152(4), pages 1159-1175, November.
    10. Galetsi, P. & Katsaliaki, K. & Kumar, S., 2019. "Values, challenges and future directions of big data analytics in healthcare: A systematic review," Social Science & Medicine, Elsevier, vol. 241(C).
    11. Audi, Robert, 2012. "Virtue Ethics as a Resource in Business," Business Ethics Quarterly, Cambridge University Press, vol. 22(2), pages 273-291, April.
    12. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    13. Wright, Scott A. & Schultz, Ainslie E., 2018. "The rising tide of artificial intelligence and business automation: Developing an ethical framework," Business Horizons, Elsevier, vol. 61(6), pages 823-832.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fildor, Dorian & Pejić Bach, Mirjana, 2023. "Testing the Ability of ChatGPT to Categorise Urgent and Non-Urgent Patient Conditions: Who ya gonna call?," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2023), Hybrid Conference, Dubrovnik, Croatia, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Hybrid Conference, Dubrovnik, Croatia, 4-6 September, 2023, pages 101-112, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    2. Roppelt, Julia Stefanie & Kanbach, Dominik K. & Kraus, Sascha, 2024. "Artificial intelligence in healthcare institutions: A systematic literature review on influencing factors," Technology in Society, Elsevier, vol. 76(C).
    3. Satish Kumar & Weng Marc Lim & Uthayasankar Sivarajah & Jaspreet Kaur, 2023. "Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis," Information Systems Frontiers, Springer, vol. 25(2), pages 871-896, April.
    4. Eliseo Sciarretta & Riccardo Mancini & Emilio Greco, 2022. "Artificial Intelligence for Healthcare and Social Services: Optimizing Resources and Promoting Sustainability," Sustainability, MDPI, vol. 14(24), pages 1-9, December.
    5. Wang, Weisha & Wang, Yichuan & Chen, Long & Ma, Rui & Zhang, Minhao, 2024. "Justice at the Forefront: Cultivating felt accountability towards Artificial Intelligence among healthcare professionals," Social Science & Medicine, Elsevier, vol. 347(C).
    6. Kusta, Olsi & Bearman, Margaret & Gorur, Radhika & Risør, Torsten & Brodersen, John Brandt & Hoeyer, Klaus, 2024. "Speed, accuracy, and efficiency: The promises and practices of digitization in pathology," Social Science & Medicine, Elsevier, vol. 345(C).
    7. Cresswell, Kathrin & Rigby, Michael & Magrabi, Farah & Scott, Philip & Brender, Jytte & Craven, Catherine K. & Wong, Zoie Shui-Yee & Kukhareva, Polina & Ammenwerth, Elske & Georgiou, Andrew & Medlock,, 2023. "The need to strengthen the evaluation of the impact of Artificial Intelligence-based decision support systems on healthcare provision," Health Policy, Elsevier, vol. 136(C).
    8. Singh, Nidhi & Jain, Monika & Kamal, Muhammad Mustafa & Bodhi, Rahul & Gupta, Bhumika, 2024. "Technological paradoxes and artificial intelligence implementation in healthcare. An application of paradox theory," Technological Forecasting and Social Change, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Vaio, Assunta & Palladino, Rosa & Hassan, Rohail & Escobar, Octavio, 2020. "Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review," Journal of Business Research, Elsevier, vol. 121(C), pages 283-314.
    2. Basile, L.J. & Carbonara, N. & Panniello, U. & Pellegrino, R., 2024. "The role of big data analytics in improving the quality of healthcare services in the Italian context: The mediating role of risk management," Technovation, Elsevier, vol. 133(C).
    3. Araz Zirar, 2023. "Can artificial intelligence’s limitations drive innovative work behaviour?," Review of Managerial Science, Springer, vol. 17(6), pages 2005-2034, August.
    4. Galetsi, Panagiota & Katsaliaki, Korina & Kumar, Sameer, 2022. "The medical and societal impact of big data analytics and artificial intelligence applications in combating pandemics: A review focused on Covid-19," Social Science & Medicine, Elsevier, vol. 301(C).
    5. Akter, Shahriar & Dwivedi, Yogesh K. & Sajib, Shahriar & Biswas, Kumar & Bandara, Ruwan J. & Michael, Katina, 2022. "Algorithmic bias in machine learning-based marketing models," Journal of Business Research, Elsevier, vol. 144(C), pages 201-216.
    6. John-Mathews, Jean-Marie, 2022. "Some critical and ethical perspectives on the empirical turn of AI interpretability," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    7. Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
    8. Assunta Di Vaio & Flavio Boccia & Loris Landriani & Rosa Palladino, 2020. "Artificial Intelligence in the Agri-Food System: Rethinking Sustainable Business Models in the COVID-19 Scenario," Sustainability, MDPI, vol. 12(12), pages 1-12, June.
    9. Uzir, Md Uzir Hossain & Al Halbusi, Hussam & Lim, Rodney & Jerin, Ishraq & Abdul Hamid, Abu Bakar & Ramayah, Thurasamy & Haque, Ahasanul, 2021. "Applied Artificial Intelligence and user satisfaction: Smartwatch usage for healthcare in Bangladesh during COVID-19," Technology in Society, Elsevier, vol. 67(C).
    10. Angélica Pigola & Priscila Rezende da Costa & Luísa Cagica Carvalho & Luciano Ferreira da Silva & Cláudia Terezinha Kniess & Emerson Antonio Maccari, 2021. "Artificial Intelligence-Driven Digital Technologies to the Implementation of the Sustainable Development Goals: A Perspective from Brazil and Portugal," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    11. Erik Hermann, 2022. "Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective," Journal of Business Ethics, Springer, vol. 179(1), pages 43-61, August.
    12. Dhruv Grewal & John Hulland & Praveen K. Kopalle & Elena Karahanna, 2020. "The future of technology and marketing: a multidisciplinary perspective," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 1-8, January.
    13. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    14. Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
    15. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    16. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    17. Chen, Yanyan & Mandler, Timo & Meyer-Waarden, Lars, 2021. "Three decades of research on loyalty programs: A literature review and future research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 179-197.
    18. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    19. Basile, Luigi Jesus & Carbonara, Nunzia & Pellegrino, Roberta & Panniello, Umberto, 2023. "Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making," Technovation, Elsevier, vol. 120(C).
    20. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:296:y:2022:i:c:s0277953622000855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.