IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v74y2023ics0160791x23001264.html
   My bibliography  Save this article

Artificial intelligence innovation in healthcare: Literature review, exploratory analysis, and future research

Author

Listed:
  • Zahlan, Ahmed
  • Ranjan, Ravi Prakash
  • Hayes, David

Abstract

Artificial intelligence (AI) innovation in healthcare has emerged as an increasingly significant area of research. AI, digital data collection, and computer infrastructure advancements have empowered humans to address complex healthcare challenges. This study conducts a systematic literature review (SLR) of peer-reviewed journal articles at the intersection of AI, innovation, and healthcare to offer research directions for scholars and leaders in healthcare management. To achieve this, the systematic review identified and analyzed 378 published studies on AI innovation in healthcare. Evaluating these publications based on inclusion and exclusion criteria yielded 75 studies ultimately selected for comprehensive analysis. This research adds to the scope of previous investigations by aiming to 1) emphasize the most crucial AI-based healthcare applications, 2) explore challenges associated with AI integration in healthcare, and 3) examine student adoption and incorporation of AI into existing healthcare curricula. We also conducted an exploratory study of over 2700 AI-enabled healthcare startups worldwide to supplement our literature review. The SLR reveals several gaps within the research scope and proposes corresponding future research directions. These future research directions will assist researchers and enable healthcare professionals to develop legislation that accelerates the adoption of AI solutions in healthcare, ultimately enhancing public access to efficient and effective healthcare services.

Suggested Citation

  • Zahlan, Ahmed & Ranjan, Ravi Prakash & Hayes, David, 2023. "Artificial intelligence innovation in healthcare: Literature review, exploratory analysis, and future research," Technology in Society, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:teinso:v:74:y:2023:i:c:s0160791x23001264
    DOI: 10.1016/j.techsoc.2023.102321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X23001264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2023.102321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
    3. Nikhil R. Sahni & George Stein & Rodney Zemmel & David Cutler, 2023. "The Potential Impact of Artificial Intelligence on Health Care Spending," NBER Chapters, in: The Economics of Artificial Intelligence: Health Care Challenges, pages 49-75, National Bureau of Economic Research, Inc.
    4. Ho, Manh-Tung & Le, Ngoc-Thang B. & Mantello, Peter & Ho, Manh-Toan & Ghotbi, Nader, 2023. "Understanding the acceptance of emotional artificial intelligence in Japanese healthcare system: A cross-sectional survey of clinic visitors’ attitude," Technology in Society, Elsevier, vol. 72(C).
    5. L. G. Pee & Shan L. Pan & Lili Cui, 2019. "Artificial intelligence in healthcare robots: A social informatics study of knowledge embodiment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(4), pages 351-369, April.
    6. Andreas Kuckertz & Joern Block, 2021. "Reviewing systematic literature reviews: ten key questions and criteria for reviewers," Management Review Quarterly, Springer, vol. 71(3), pages 519-524, July.
    7. Bhatia, Ridhi, 2021. "Telehealth and COVID-19: Using technology to accelerate the curve on access and quality healthcare for citizens in India," Technology in Society, Elsevier, vol. 64(C).
    8. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    9. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    10. David Thesmar & David Sraer & Lisa Pinheiro & Nick Dadson & Razvan Veliche & Paul Greenberg, 2019. "Combining the Power of Artificial Intelligence with the Richness of Healthcare Claims Data: Opportunities and Challenges," PharmacoEconomics, Springer, vol. 37(6), pages 745-752, June.
    11. Liu, Xiaohui & He, Xiaoyu & Wang, Mengmeng & Shen, Huizhang, 2022. "What influences patients' continuance intention to use AI-powered service robots at hospitals? The role of individual characteristics," Technology in Society, Elsevier, vol. 70(C).
    12. Effy Vayena & Alessandro Blasimme & I Glenn Cohen, 2018. "Machine learning in medicine: Addressing ethical challenges," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-4, November.
    13. Hajkowicz, Stefan & Sanderson, Conrad & Karimi, Sarvnaz & Bratanova, Alexandra & Naughtin, Claire, 2023. "Artificial intelligence adoption in the physical sciences, natural sciences, life sciences, social sciences and the arts and humanities: A bibliometric analysis of research publications from 1960-2021," Technology in Society, Elsevier, vol. 74(C).
    14. Davila, Antonio & Foster, George & Gupta, Mahendra, 2003. "Venture capital financing and the growth of startup firms," Journal of Business Venturing, Elsevier, vol. 18(6), pages 689-708, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gillner, Sandra, 2024. "We're implementing AI now, so why not ask us what to do? – How AI providers perceive and navigate the spread of diagnostic AI in complex healthcare systems," Social Science & Medicine, Elsevier, vol. 340(C).
    2. Roppelt, Julia Stefanie & Kanbach, Dominik K. & Kraus, Sascha, 2024. "Artificial intelligence in healthcare institutions: A systematic literature review on influencing factors," Technology in Society, Elsevier, vol. 76(C).
    3. Samadhiya, Ashutosh & Yadav, Sanjeev & Kumar, Anil & Majumdar, Abhijit & Luthra, Sunil & Garza-Reyes, Jose Arturo & Upadhyay, Arvind, 2023. "The influence of artificial intelligence techniques on disruption management: Does supply chain dynamism matter?," Technology in Society, Elsevier, vol. 75(C).
    4. Williams, Robin & Anderson, Stuart & Cresswell, Kathrin & Kannelønning, Mari Serine & Mozaffar, Hajar & Yang, Xiao, 2024. "Domesticating AI in medical diagnosis," Technology in Society, Elsevier, vol. 76(C).
    5. Ali, Omar & Murray, Peter A. & Momin, Mujtaba & Al-Anzi, Fawaz S., 2023. "The knowledge and innovation challenges of ChatGPT: A scoping review," Technology in Society, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roppelt, Julia Stefanie & Kanbach, Dominik K. & Kraus, Sascha, 2024. "Artificial intelligence in healthcare institutions: A systematic literature review on influencing factors," Technology in Society, Elsevier, vol. 76(C).
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    4. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    5. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    7. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    8. Adelaide Martins & Manuel Castelo Branco & Pedro Novo Melo & Carolina Machado, 2022. "Sustainability in Small and Medium-Sized Enterprises: A Systematic Literature Review and Future Research Agenda," Sustainability, MDPI, vol. 14(11), pages 1-26, May.
    9. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    10. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    12. Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Cristian Simionescu & Adrian Iftene, 2022. "Deep Learning Research Directions in Medical Imaging," Mathematics, MDPI, vol. 10(23), pages 1-25, November.
    14. Jingui Zhang & Chuangji Meng & Cunlu Xu & Jingyong Ma & Wei Su, 2022. "Deep Transfer Learning Method Based on Automatic Domain Alignment and Moment Matching," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    15. Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Marta Mazur & Artnora Ndokaj & Divyambika Catakapatri Venugopal & Michela Roberto & Cristina Albu & Maciej Jedliński & Silverio Tomao & Iole Vozza & Grzegorz Trybek & Livia Ottolenghi & Fabrizio Guerr, 2021. "In Vivo Imaging-Based Techniques for Early Diagnosis of Oral Potentially Malignant Disorders—Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
    17. Khalid A. Ibrahim & Kristin S. Grußmayer & Nathan Riguet & Lely Feletti & Hilal A. Lashuel & Aleksandra Radenovic, 2023. "Label-free identification of protein aggregates using deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Songhee Cheon & Jungyoon Kim & Jihye Lim, 2019. "The Use of Deep Learning to Predict Stroke Patient Mortality," IJERPH, MDPI, vol. 16(11), pages 1-12, May.
    19. Hailong He & Christine Schönmann & Mathias Schwarz & Benedikt Hindelang & Andrei Berezhnoi & Susanne Annette Steimle-Grauer & Ulf Darsow & Juan Aguirre & Vasilis Ntziachristos, 2022. "Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Zilong Zhou & Hang Yuan & Xin Cai, 2023. "Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods," Mathematics, MDPI, vol. 11(5), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:74:y:2023:i:c:s0160791x23001264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.