IDEAS home Printed from https://ideas.repec.org/p/osf/thesis/98c3q.html
   My bibliography  Save this paper

Passive Diagnosis of Mental Health Disorders Incorporating an Empathic Dialogue System

Author

Listed:
  • Delahunty, Fionn
  • Arcan, Mihael
  • Johansson, Robert

Abstract

Depression and anxiety are the two most prevalent mental health disorders worldwide, impacting the lives of millions of people each year. Current screening methods require individuals to manually complete psychometric questionnaires. In this work we develop a deep learning approach to predict psychometric scores given textual data through the use of psycholinguistics features. Data is collected via a dialogue system, were we develop and incorporate an approach to model empathy. Which aims to allow for appropriate use of these systems in a clinical setting. Following a public evaluation, we demonstrate that our approach to model empathy can out perform a similarly trained non empathic approach. Additionally, we show that our deep learning prediction approach performed well on evaluation data, but has difficulty generalizing to experimentally collected data. Limitations and implications as a result of this work are discussed.

Suggested Citation

  • Delahunty, Fionn & Arcan, Mihael & Johansson, Robert, 2019. "Passive Diagnosis of Mental Health Disorders Incorporating an Empathic Dialogue System," Thesis Commons 98c3q, Center for Open Science.
  • Handle: RePEc:osf:thesis:98c3q
    DOI: 10.31219/osf.io/98c3q
    as

    Download full text from publisher

    File URL: https://osf.io/download/5d9b4622e59e11000d19217b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/98c3q?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Effy Vayena & Alessandro Blasimme & I Glenn Cohen, 2018. "Machine learning in medicine: Addressing ethical challenges," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-4, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mashael Alsobhi & Harpreet Singh Sachdev & Mohamed Faisal Chevidikunnan & Reem Basuodan & Dhanesh Kumar K U & Fayaz Khan, 2022. "Facilitators and Barriers of Artificial Intelligence Applications in Rehabilitation: A Mixed-Method Approach," IJERPH, MDPI, vol. 19(23), pages 1-21, November.
    2. Charlotte Blease & Anna Kharko & Cosima Locher & Catherine M DesRoches & Kenneth D Mandl, 2020. "US primary care in 2029: A Delphi survey on the impact of machine learning," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    3. Lepore, Dominique & Dolui, Koustabh & Tomashchuk, Oleksandr & Shim, Heereen & Puri, Chetanya & Li, Yuan & Chen, Nuoya & Spigarelli, Francesca, 2023. "Interdisciplinary research unlocking innovative solutions in healthcare," Technovation, Elsevier, vol. 120(C).
    4. Lily Popova Zhuhadar & Miltiadis D. Lytras, 2023. "The Application of AutoML Techniques in Diabetes Diagnosis: Current Approaches, Performance, and Future Directions," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    5. Carl B. Roth & Andreas Papassotiropoulos & Annette B. Brühl & Undine E. Lang & Christian G. Huber, 2021. "Psychiatry in the Digital Age: A Blessing or a Curse?," IJERPH, MDPI, vol. 18(16), pages 1-32, August.
    6. Dessislava Pachamanova & Vera Tilson & Keely Dwyer-Matzky, 2022. "Case Article—Machine Learning, Ethics, and Change Management: A Data-Driven Approach to Improving Hospital Observation Unit Operations," INFORMS Transactions on Education, INFORMS, vol. 22(3), pages 178-187, May.
    7. Michael Gerlich, 2024. "Brace for Impact: Facing the AI Revolution and Geopolitical Shifts in a Future Societal Scenario for 2025–2040," Societies, MDPI, vol. 14(9), pages 1-17, September.
    8. Esra Zihni & Vince Istvan Madai & Michelle Livne & Ivana Galinovic & Ahmed A Khalil & Jochen B Fiebach & Dietmar Frey, 2020. "Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.
    9. Ignat Drozdov & Daniel Forbes & Benjamin Szubert & Mark Hall & Chris Carlin & David J Lowe, 2020. "Supervised and unsupervised language modelling in Chest X-Ray radiological reports," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-16, March.
    10. Morley, Jessica & Machado, Caio C.V. & Burr, Christopher & Cowls, Josh & Joshi, Indra & Taddeo, Mariarosaria & Floridi, Luciano, 2020. "The ethics of AI in health care: A mapping review," Social Science & Medicine, Elsevier, vol. 260(C).
    11. Thomas Molala & Jabulani Makhubele, 2021. "A conceptual framework for the ethical deployment of Artificial Intelligence in addressing mental health challenges: Guidelines for Social Workers," Technium Social Sciences Journal, Technium Science, vol. 24(1), pages 696-706, October.
    12. Siala, Haytham & Wang, Yichuan, 2022. "SHIFTing artificial intelligence to be responsible in healthcare: A systematic review," Social Science & Medicine, Elsevier, vol. 296(C).
    13. Zahlan, Ahmed & Ranjan, Ravi Prakash & Hayes, David, 2023. "Artificial intelligence innovation in healthcare: Literature review, exploratory analysis, and future research," Technology in Society, Elsevier, vol. 74(C).
    14. Mohammad I. Merhi, 2023. "An Assessment of the Barriers Impacting Responsible Artificial Intelligence," Information Systems Frontiers, Springer, vol. 25(3), pages 1147-1160, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:thesis:98c3q. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://thesiscommons.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.