IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v69y2022ics0928765522000276.html
   My bibliography  Save this article

An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles

Author

Listed:
  • Greaker, Mads
  • Hagem, Cathrine
  • Proost, Stef

Abstract

Higher battery storage capacity in electric vehicles (EV) implies less need for inconvenient recharging during long trips and increases the potential gains from vehicle-to-grid (V2G) electricity supply. We present an analytical model for the intertwinement of the consumers’ choice of battery capacity and the electricity market. We show that V2G increases the consumers’ choice of battery capacity, and it may reduce the cost of owning an EV vis-à-vis a traditional car. Furthermore, V2G alleviates the capacity pressure on peak hours, and thereby reduces the need for investment in generating capacity, saving social costs. Moreover, V2G may make the difference in electricity prices between peak and off-peak hours smaller, potentially increasing social surplus further. Based on a future scenario for the Belgian electricity market, we provide a numerical illustration indicating that the savings might be substantial.

Suggested Citation

  • Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
  • Handle: RePEc:eee:resene:v:69:y:2022:i:c:s0928765522000276
    DOI: 10.1016/j.reseneeco.2022.101310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765522000276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2022.101310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freeman, Gerad M. & Drennen, Thomas E. & White, Andrew D., 2017. "Can parked cars and carbon taxes create a profit? The economics of vehicle-to-grid energy storage for peak reduction," Energy Policy, Elsevier, vol. 106(C), pages 183-190.
    2. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
    3. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    4. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    5. Greaker, Mads & Midttømme, Kristoffer, 2016. "Network effects and environmental externalities: Do clean technologies suffer from excess inertia?," Journal of Public Economics, Elsevier, vol. 143(C), pages 27-38.
    6. Uddin, Kotub & Dubarry, Matthieu & Glick, Mark B., 2018. "The viability of vehicle-to-grid operations from a battery technology and policy perspective," Energy Policy, Elsevier, vol. 113(C), pages 342-347.
    7. Newbery, David, 2018. "Shifting demand and supply over time and space to manage intermittent generation: The economics of electrical storage," Energy Policy, Elsevier, vol. 113(C), pages 711-720.
    8. Ambec, Stefan & Crampes, Claude, 2012. "Electricity provision with intermittent sources of energy," Resource and Energy Economics, Elsevier, vol. 34(3), pages 319-336.
    9. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    10. Geske, Joachim & Schumann, Diana, 2018. "Willing to participate in vehicle-to-grid (V2G)? Why not!," Energy Policy, Elsevier, vol. 120(C), pages 392-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Littlejohn, Christina & Proost, Stef, 2022. "What role for electric vehicles in the decarbonization of the car transport sector in Europe?," Economics of Transportation, Elsevier, vol. 32(C).
    2. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stef Proost & Mads Greaker & Cathrine Hagem, 2019. "Vehicle-to-Grid. Impacts on the electricity market and consumer cost of electric vehicles," Discussion Papers 903, Statistics Norway, Research Department.
    2. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    5. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    6. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    7. Huang, Bing & Meijssen, Aart Gerard & Annema, Jan Anne & Lukszo, Zofia, 2021. "Are electric vehicle drivers willing to participate in vehicle-to-grid contracts? A context-dependent stated choice experiment," Energy Policy, Elsevier, vol. 156(C).
    8. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2023. "Estimating financial compensation and minimum guaranteed charge for vehicle-to-grid technology," Energy Policy, Elsevier, vol. 180(C).
    9. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    10. Mehdizadeh, Milad & Nayum, Alim & Nordfjærn, Trond & Klöckner, Christian A., 2024. "Are Norwegian car users ready for a transition to vehicle-to-grid technology?," Transport Policy, Elsevier, vol. 146(C), pages 126-136.
    11. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    12. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    13. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    14. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Helferich, Marvin & Tröger, Josephine & Stephan, Annegret & Preuß, Sabine & Pelka, Sabine & Stute, Judith & Plötz, Patrick, 2024. "Tariff option preferences for smart and bidirectional charging: Evidence from battery electric vehicle users in Germany," Energy Policy, Elsevier, vol. 192(C).
    16. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    17. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    18. Jenn, Alan, 2023. "Emissions of electric vehicles in California’s transition to carbon neutrality," Applied Energy, Elsevier, vol. 339(C).
    19. Philipp Andreas Gunkel & Claire Bergaentzl'e & Ida Gr{ae}sted Jensen & Fabian Scheller, 2020. "From passive to active: Flexibility from electric vehicles in the context of transmission system development," Papers 2011.05830, arXiv.org.
    20. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge-Juan Blanes-Peiró, 2020. "Contribution of Driving Efficiency and Vehicle-to-Grid to Eco-Design," Energies, MDPI, vol. 13(15), pages 1-29, August.

    More about this item

    Keywords

    Electric vehicles; Vehicle-to-grid; V2G; Electricity market;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:69:y:2022:i:c:s0928765522000276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.