Can parked cars and carbon taxes create a profit? The economics of vehicle-to-grid energy storage for peak reduction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2017.03.052
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yin, Wanjun & Ji, Jianbo & Qin, Xuan, 2023. "Study on optimal configuration of EV charging stations based on second-order cone," Energy, Elsevier, vol. 284(C).
- Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Esther H. Park Lee & Zofia Lukszo & Paulien Herder, 2018. "Conceptualization of Vehicle-to-Grid Contract Types and Their Formalization in Agent-Based Models," Complexity, Hindawi, vol. 2018, pages 1-11, March.
- Liu, Junbei & Zhuge, Chengxiang & Tang, Justin Hayse Chiwing G. & Meng, Meng & Zhang, Jie, 2022. "A spatial agent-based joint model of electric vehicle and vehicle-to-grid adoption: A case of Beijing," Applied Energy, Elsevier, vol. 310(C).
- Mikołaj Bartłomiejczyk & Leszek Jarzebowicz & Roman Hrbáč, 2022. "Application of Traction Supply System for Charging Electric Cars," Energies, MDPI, vol. 15(4), pages 1-13, February.
- Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
- Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
- Stef Proost & Mads Greaker & Cathrine Hagem, 2019. "Vehicle-to-Grid. Impacts on the electricity market and consumer cost of electric vehicles," Discussion Papers 903, Statistics Norway, Research Department.
- Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
- Jenn, Alan PhD & Brown, Austin PhD, 2021. "Green Charging of Electric Vehicles Under a Net-Zero Emissions Policy Transition in California," Institute of Transportation Studies, Working Paper Series qt2rv3h345, Institute of Transportation Studies, UC Davis.
- Mohammadi Landi, Meysam & Mohammadi, Mohammad & Rastegar, Mohammad, 2018. "Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems," Energy, Elsevier, vol. 158(C), pages 504-511.
- Monica Arnaudo & Monika Topel & Björn Laumert, 2020. "Vehicle-To-Grid for Peak Shaving to Unlock the Integration of Distributed Heat Pumps in a Swedish Neighborhood," Energies, MDPI, vol. 13(7), pages 1-13, April.
- Jenn, Alan, 2023. "Emissions of electric vehicles in California’s transition to carbon neutrality," Applied Energy, Elsevier, vol. 339(C).
- Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
- Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
- Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
- Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
- Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
- De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ito, Nobuyuki & Takeuchi, Kenji & Managi, Shunsuke, 2019.
"Do battery-switching systems accelerate the adoption of electric vehicles? A stated preference study,"
Economic Analysis and Policy, Elsevier, vol. 61(C), pages 85-92.
- Nobuyuki Ito & Kenji Takeuchi & Shunsuke Managi, 2016. "Do Battery-Switching Systems Accelerate the Adoption of Electric Vehicles? A Stated Preference Study," Discussion Papers 1645, Graduate School of Economics, Kobe University.
- Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
- Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
- Biswas, D.B. & Bose, S. & Dalvi, V.H. & Deshmukh, S.P. & Shenoy, N.V. & Panse, S.V. & Joshi, J.B., 2020. "A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage against solar photovoltai," Energy, Elsevier, vol. 213(C).
- Ivan Mareev & Dirk Uwe Sauer, 2018. "Energy Consumption and Life Cycle Costs of Overhead Catenary Heavy-Duty Trucks for Long-Haul Transportation," Energies, MDPI, vol. 11(12), pages 1-18, December.
- Toktarova, Alla & Walter, Viktor & Göransson, Lisa & Johnsson, Filip, 2022. "Interaction between electrified steel production and the north European electricity system," Applied Energy, Elsevier, vol. 310(C).
- Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
- Verdolini, Elena & Vona, Francesco & Popp, David, 2018.
"Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?,"
Energy Policy, Elsevier, vol. 116(C), pages 242-256.
- Verdolini, Elena & Vona, Francesco & Popp, David, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," MITP: Mitigation, Innovation and Transformation Pathways 244327, Fondazione Eni Enrico Mattei (FEEM).
- Elena Verdolini & Francesco Vona & David Popp, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Post-Print hal-03471734, HAL.
- Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," NBER Working Papers 22454, National Bureau of Economic Research, Inc.
- Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," Working Papers id:11125, eSocialSciences.
- Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," Working Papers 2016.51, Fondazione Eni Enrico Mattei.
- Elena Verdolini & Francesco Vona & David Popp, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," SciencePo Working papers Main hal-03471734, HAL.
- Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
- Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
- Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
- Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
- Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
More about this item
Keywords
Vehicle-to-grid; Grid-able vehicles; Electric vehicles; Battery storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:106:y:2017:i:c:p:183-190. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.