IDEAS home Printed from https://ideas.repec.org/a/eee/ecotra/v32y2022ics221201222200034x.html
   My bibliography  Save this article

What role for electric vehicles in the decarbonization of the car transport sector in Europe?

Author

Listed:
  • Littlejohn, Christina
  • Proost, Stef

Abstract

The transport sector is the only sector where carbon emissions continue to grow. This has led policy makers to propose ambitious policies to reduce emissions in the car sector, in particular carbon emissions standards, portfolio mandates for Electric Vehicles and purchase taxes or subsidies. We use a stylized two-period model for the car manufacturing sector to compare the cost efficiency of these policies. The model has gasoline fueled cars (GV) compete with battery electric cars (EV). Both types of cars have endogenous technological progress that is triggered by environmental policies, including tradable carbon emissions standards, portfolio mandates, carbon taxes, purchase taxes and R&D subsidies. Parked EVs can serve as batteries that help grid operators to shift off peak (renewable) electricity to peak hour supply. The model is calibrated to evaluate the EU policy to reduce average carbon emissions of new cars by 37,5% in 2030 compared to 2021. We assess the cost-efficiency of policy instruments evaluating vehicle costs and prices, fuel costs, and externalities. We find that a carbon emissions standard achieves emission reductions at a much lower cost than a portfolio mandate for electric cars.

Suggested Citation

  • Littlejohn, Christina & Proost, Stef, 2022. "What role for electric vehicles in the decarbonization of the car transport sector in Europe?," Economics of Transportation, Elsevier, vol. 32(C).
  • Handle: RePEc:eee:ecotra:v:32:y:2022:i:c:s221201222200034x
    DOI: 10.1016/j.ecotra.2022.100283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S221201222200034X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecotra.2022.100283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brown, Marilyn A., 2001. "Market failures and barriers as a basis for clean energy policies," Energy Policy, Elsevier, vol. 29(14), pages 1197-1207, November.
    2. Soren T. Anderson & James M. Sallee, 2011. "Using Loopholes to Reveal the Marginal Cost of Regulation: The Case of Fuel-Economy Standards," American Economic Review, American Economic Association, vol. 101(4), pages 1375-1409, June.
    3. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Meghan R. Busse & Christopher R. Knittel & Florian Zettelmeyer, 2013. "Are Consumers Myopic? Evidence from New and Used Car Purchases," American Economic Review, American Economic Association, vol. 103(1), pages 220-256, February.
    6. Popp, David, 2019. "Environmental Policy and Innovation: A Decade of Research," International Review of Environmental and Resource Economics, now publishers, vol. 13(3-4), pages 265-337, September.
    7. Grischa Perino, 2018. "New EU ETS Phase 4 rules temporarily puncture waterbed," Nature Climate Change, Nature, vol. 8(4), pages 262-264, April.
    8. Soren T. Anderson & James M. Sallee, 2016. "Designing Policies to Make Cars Greener," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 157-180, October.
    9. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    10. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    11. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    12. Goulder, Lawrence H. & Jacobsen, Mark R. & van Benthem, Arthur A., 2012. "Unintended consequences from nested state and federal regulations: The case of the Pavley greenhouse-gas-per-mile limits," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 187-207.
    13. Hendrik Wolff, 2014. "Keep Your Clunker in the Suburb: Low‐emission Zones and Adoption of Green Vehicles," Economic Journal, Royal Economic Society, vol. 124(578), pages 481-512, August.
    14. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    15. Kenneth T. Gillingham & Sébastien Houde & Arthur A. van Benthem, 2021. "Consumer Myopia in Vehicle Purchases: Evidence from a Natural Experiment," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 207-238, August.
    16. Simon P. Anderson & André de Palma, 2001. "Product Diversity in Asymmetric Oligopoly: Is the Quality of Consumer Goods too Low?," Journal of Industrial Economics, Wiley Blackwell, vol. 49(2), pages 113-135, June.
    17. Bruninx, Kenneth & Ovaere, Marten & Delarue, Erik, 2020. "The long-term impact of the market stability reserve on the EU emission trading system," Energy Economics, Elsevier, vol. 89(C).
    18. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    19. Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
    20. Mathias Reynaert, 2021. "Abatement Strategies and the Cost of Environmental Regulation: Emission Standards on the European Car Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 454-488.
    21. Soren T. Anderson & James M. Sallee, 2016. "Designing Policies to Make Cars Greener: A Review of the Literature," NBER Working Papers 22242, National Bureau of Economic Research, Inc.
    22. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    23. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    24. Finn Roar Aune & Ann Christin Bøeng & Snorre Kverndokk & Lars Lindholt & Knut Einar Rosendahl, 2017. "Fuel Efficiency Improvements: Feedback Mechanisms and Distributional Effects in the Oil Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 15-45, September.
    25. Wolff, Hendrik, 2014. "Keep Your Clunker in the Suburb: Low Emission Zones and Adoption of Green Vehicles," IZA Discussion Papers 8180, Institute of Labor Economics (IZA).
    26. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    27. Greaker, Mads & Midttømme, Kristoffer, 2016. "Network effects and environmental externalities: Do clean technologies suffer from excess inertia?," Journal of Public Economics, Elsevier, vol. 143(C), pages 27-38.
    28. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    29. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    30. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    31. David L. Greene, 2010. "Why the New Market for New Passenger Cars Generally Undervalues Fuel Economy," OECD/ITF Joint Transport Research Centre Discussion Papers 2010/6, OECD Publishing.
    32. Hakan Eggert & Mads Greaker, 2014. "Promoting Second Generation Biofuels: Does the First Generation Pave the Road?," Energies, MDPI, vol. 7(7), pages 1-16, July.
    33. Yao, Dennis A., 1988. "Strategic responses to automobile emissions control: A game-theoretic analysis," Journal of Environmental Economics and Management, Elsevier, vol. 15(4), pages 419-438, December.
    34. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    35. Laura Grigolon & Mathias Reynaert & Frank Verboven, 2018. "Consumer Valuation of Fuel Costs and Tax Policy: Evidence from the European Car Market," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 193-225, August.
    36. Verboven, Frank & Grigolon, Laura & Reynaert, Mathias, 2014. "Consumer valuation of fuel costs and the effectiveness of tax policy: Evidence from the European car market," CEPR Discussion Papers 10301, C.E.P.R. Discussion Papers.
    37. Barla, Philippe & Proost, Stef, 2012. "Energy efficiency policy in a non-cooperative world," Energy Economics, Elsevier, vol. 34(6), pages 2209-2215.
    38. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    39. Wangsness, Paal Brevik & Proost, Stef & Rødseth, Kenneth Løvold, 2018. "Vehicle choices and urban transport externalities. Are Norwegian policy makers getting it right?," Working Paper Series 2-2018, Norwegian University of Life Sciences, School of Economics and Business.
    40. Yiyi Zhou & Shanjun Li, 2018. "Technology Adoption and Critical Mass: The Case of the U.S. Electric Vehicle Market," Journal of Industrial Economics, Wiley Blackwell, vol. 66(2), pages 423-480, June.
    41. Hardman, Scott & Chandan, Amrit & Tal, Gil & Turrentine, Tom, 2017. "The effectiveness of financial purchase incentives for battery electric vehicles – A review of the evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1100-1111.
    42. Sergey Paltsev & Y.-H. Henry Chen & Valerie Karplus & Paul Kishimoto & John Reilly & Andreas Löschel & Kathrine Graevenitz & Simon Koesler, 2018. "Reducing CO2 from cars in the European Union," Transportation, Springer, vol. 45(2), pages 573-595, March.
    43. Katalin Springel, 2021. "Network Externality and Subsidy Structure in Two-Sided Markets: Evidence from Electric Vehicle Incentives," American Economic Journal: Economic Policy, American Economic Association, vol. 13(4), pages 393-432, November.
    44. Tattini, Jacopo & Gargiulo, Maurizio & Karlsson, Kenneth, 2018. "Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework," Energy Policy, Elsevier, vol. 113(C), pages 571-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    2. Walter, Antonia & Held, Maximilian & Pareschi, Giacomo & Pengg, Hermann & Madlener, Reinhard, 2020. "Decarbonizing the European Automobile Fleet: Impacts of 1.5 °C-compliant Climate Policies in Germany and Norway," FCN Working Papers 18/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    2. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    3. Li, Shanjun & Wang, Binglin & Zhou, Hui, 2024. "Decarbonizing passenger transportation in developing countries: Lessons and perspectives1," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    4. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    5. Mathias Reynaert, 2021. "Abatement Strategies and the Cost of Environmental Regulation: Emission Standards on the European Car Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 454-488.
    6. D’Haultfœuille, Xavier & Durrmeyer, Isis & Février, Philippe, 2016. "Disentangling sources of vehicle emissions reduction in France: 2003–2008," International Journal of Industrial Organization, Elsevier, vol. 47(C), pages 186-229.
    7. Filippo Maria D’Arcangelo & Ilai Levin & Alessia Pagani & Mauro Pisu & Åsa Johansson, 2022. "A framework to decarbonise the economy," OECD Economic Policy Papers 31, OECD Publishing.
    8. Vollebergh, Herman & van der Werf, Edwin & Vogel, Johanna, 2023. "A descriptive framework to evaluate instrument packages for the low-carbon transition," Ecological Economics, Elsevier, vol. 205(C).
    9. Houde, Sébastien & Myers, Erica, 2021. "Are consumers attentive to local energy costs? Evidence from the appliance market," Journal of Public Economics, Elsevier, vol. 201(C).
    10. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    11. Pavan, Giulia, 2017. "Green Car Adoption and the Supply of Alternative Fuels," TSE Working Papers 17-875, Toulouse School of Economics (TSE).
    12. Katinka Holtsmark & Katinka Kristine Holtsmark, 2024. "Can Revenue Recycling Kill Green Technology?," CESifo Working Paper Series 11510, CESifo.
    13. Gugler, Klaus & Szücs, Florian & Wiedenhofer, Thomas, 2024. "Environmental Policies and directed technological change," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    14. Ahlvik, Lassi & van den Bijgaart, Inge, 2024. "Screening green innovation through carbon pricing," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    15. Linn, Joshua, 2023. "Emissions Standards and Electric Vehicle Targets for Passenger Vehicles," RFF Working Paper Series 23-05, Resources for the Future.
    16. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    18. Alberini, Anna & Vance, Colin, 2023. "Competing forces in the German new car market: How do they affect diesel, PHEV, and BEV sales?," Ruhr Economic Papers 1047, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Mathias Reynaert & James M. Sallee, 2021. "Who Benefits When Firms Game Corrective Policies?," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 372-412, February.
    20. Edwin van der Werf & Herman R. J. Vollebergh & Johanna Vogel, 2021. "Designing Instrument Packages for the Low-Carbon Transition: An Evaluation Framework with an Application to Austria," CESifo Working Paper Series 9192, CESifo.

    More about this item

    Keywords

    Electric vehicles; EU climate policy; Climate change; Portfolio mandate; R&D;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecotra:v:32:y:2022:i:c:s221201222200034x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecotra .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.