IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p18-d1303420.html
   My bibliography  Save this article

The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings

Author

Listed:
  • Krzysztof Zagrajek

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland)

  • Mariusz Kłos

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland)

  • Desire D. Rasolomampionona

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland)

  • Mirosław Lewandowski

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland)

  • Karol Pawlak

    (Institute of Electrical Power Engineering, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland)

Abstract

This paper presents the concept of using electric vehicles (EVs) as a countermeasure to deal with the negative effects of power rationing when electricity demands become difficult to meet due to unfavorable electrical system operating conditions. At present, an energy storage is widely used to maintain the stability of electricity supply in facilities whose main source of energy is renewable energy sources (RESs). However, we must not forget that electric vehicles are also electricity storage facilities, but they are not always available due to their mobility. With properly developed strategies, they can be used in electricity management processes, for example, by reducing their consumption during charging using smart charging technology, or by providing electricity from their batteries using vehicle-to-building (V2B) technology. Thus, this article presents a research methodology that treats electric vehicles as a remedy for eliminating power constraints. It consists of five main steps, including two algorithms for deciding how to deploy EVs during power rationing periods. An efficiency factor for eliminating these constraints was also introduced. The results showed that the use of smart charging or V2B technology in EVs can reduce the number of potential hours in which certain power levels are exceeded by up to several tens of percent. This means that in the future, with the significant development of electromobility, such a way of dealing with power constraints could be an alternative to conventional solutions like diesel generators.

Suggested Citation

  • Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:18-:d:1303420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tostado-Véliz, Marcos & León-Japa, Rogelio S. & Jurado, Francisco, 2021. "Optimal electrification of off-grid smart homes considering flexible demand and vehicle-to-home capabilities," Applied Energy, Elsevier, vol. 298(C).
    2. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
    4. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    5. Simshauser, Paul, 2023. "The 2022 energy crisis: Fuel poverty and the impact of policy interventions in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 121(C).
    6. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    7. Hutter, Christian & Weber, Enzo, 2023. "Russia–Ukraine war: A note on short-run production and labour market effects of the energy crisis," Energy Policy, Elsevier, vol. 183(C).
    8. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    9. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    10. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    11. Arndt, Christoph, 2023. "Climate change vs energy security? The conditional support for energy sources among Western Europeans," Energy Policy, Elsevier, vol. 174(C).
    12. Bigerna, Simona & Ceccacci, Francesca & Micheli, Silvia & Polinori, Paolo, 2023. "Between saying and doing for ensuring energy resources supply: The case of Italy in time of crisis," Resources Policy, Elsevier, vol. 85(PA).
    13. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    14. Manríquez, Francisco & Sauma, Enzo & Aguado, José & de la Torre, Sebastián & Contreras, Javier, 2020. "The impact of electric vehicle charging schemes in power system expansion planning," Applied Energy, Elsevier, vol. 262(C).
    15. Tulpule, Pinak J. & Marano, Vincenzo & Yurkovich, Stephen & Rizzoni, Giorgio, 2013. "Economic and environmental impacts of a PV powered workplace parking garage charging station," Applied Energy, Elsevier, vol. 108(C), pages 323-332.
    16. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak & Łukasz Baran & Tomasz Barcz & Przemysław Kołaczyński & Wojciech Suchecki, 2023. "Investing in Distributed Generation Technologies at Polish University Campuses during the Energy Transition Era," Energies, MDPI, vol. 16(12), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    2. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    3. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    4. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    5. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Li, Shaojie & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2023. "Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design," Energy, Elsevier, vol. 271(C).
    6. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    7. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    8. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    9. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    10. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    12. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    13. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Greaker, Mads & Hagem, Cathrine & Proost, Stef, 2022. "An economic model of vehicle-to-grid: Impacts on the electricity market and consumer cost of electric vehicles," Resource and Energy Economics, Elsevier, vol. 69(C).
    15. Zhou, Yuekuan, 2023. "A dynamic self-learning grid-responsive strategy for battery sharing economy—multi-objective optimisation and posteriori multi-criteria decision making," Energy, Elsevier, vol. 266(C).
    16. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    17. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    18. Rahmat Khezri & David Steen & Le Anh Tuan, 2024. "Willingness to Participate in Vehicle-to-Everything (V2X) in Sweden, 2022—Using an Electric Vehicle’s Battery for More Than Transport," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
    19. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
    20. Sridharan, S. & Sivakumar, S. & Shanmugasundaram, N. & Swapna, S. & Vasan Prabhu, V., 2023. "A hybrid approach based energy management for building resilience against power outage by shared parking station for EVs," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:18-:d:1303420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.