IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018336.html
   My bibliography  Save this article

Impact of flexible and bidirectional charging in medium- and heavy-duty trucks on California’s decarbonization pathway

Author

Listed:
  • Anderson, Osten
  • Yu, Nanpeng
  • Hong, Wanshi
  • Wang, Bin

Abstract

California has committed to ambitious decarbonization targets across multiple sectors, including decarbonizing the electrical grid by 2045. In addition, the medium- and heavy-duty truck fleets are expected to see rapid electrification over the next two decades. Considering these two pathways in tandem is critical for ensuring cost optimality and reliable power system operation. In particular, we examine the potential cost savings of electrical generation infrastructure by enabling flexible charging and bidirectional charging for these trucks. We also examine costs adjacent to enabling these services, such as charger upgrades and battery degradation. We deploy a large mixed-integer decarbonization planning model to quantify the costs associated with the electric generation decarbonization pathway. Example scenarios governing truck driving and charging behaviors are implemented to reveal the sensitivity of temporal driving patterns. Our experiments show that cost savings on the order of multiple billions of dollars are possible by enabling flexible and bidirectional charging in medium- and heavy-duty trucks in California.

Suggested Citation

  • Anderson, Osten & Yu, Nanpeng & Hong, Wanshi & Wang, Bin, 2025. "Impact of flexible and bidirectional charging in medium- and heavy-duty trucks on California’s decarbonization pathway," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018336
    DOI: 10.1016/j.apenergy.2024.124450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.