IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p917-d322017.html
   My bibliography  Save this article

Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers

Author

Listed:
  • Konstantinos Oureilidis

    (Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Kyriaki-Nefeli Malamaki

    (Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Konstantinos Gallos

    (Independent Power Transmission Operator, 10443 Athens, Greece)

  • Achilleas Tsitsimelis

    (Independent Power Transmission Operator, 10443 Athens, Greece)

  • Christos Dikaiakos

    (Independent Power Transmission Operator, 10443 Athens, Greece)

  • Spyros Gkavanoudis

    (Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Milos Cvetkovic

    (Department of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Juan Manuel Mauricio

    (Department of Electrical Engineering, University of Seville, 41092 Seville, Spain)

  • Jose Maria Maza Ortega

    (Department of Electrical Engineering, University of Seville, 41092 Seville, Spain)

  • Jose Luis Martinez Ramos

    (Department of Electrical Engineering, University of Seville, 41092 Seville, Spain)

  • George Papaioannou

    (Independent Power Transmission Operator, 10443 Athens, Greece)

  • Charis Demoulias

    (Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

The high proliferation of converter-dominated Distributed Renewable Energy Sources (DRESs) at the distribution grid level has gradually replaced the conventional synchronous generators (SGs) of the transmission system, resulting in emerging stability and security challenges. The inherent characteristics of the SGs are currently used for providing ancillary services (ASs), following the instructions of the Transmission System Operator, while the DRESs are obliged to offer specific system support functions, without being remunerated for these functions, but only for the energy they inject. This changing environment has prompted the integration of energy storage systems as a solution for transfusing new characteristics and elaborating their business in the electricity markets, while the smart grid infrastructure and the upcoming microgrid architectures contribute to the transformation of the distribution grid. This review investigates the existing ASs in transmission system with the respective markets (emphasizing the DRESs’ participation in these markets) and proposes new ASs at distribution grid level, with emphasis to inertial response, active power ramp rate control, frequency response, voltage regulation, fault contribution and harmonic mitigation. The market tools and mechanisms for the procurement of these ASs are presented evolving the existing role of the Operators. Finally, potential barriers in the technical, regulatory, and financial framework have been identified and analyzed.

Suggested Citation

  • Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:917-:d:322017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    3. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    4. Attya, A.B. & Dominguez-Garcia, J.L. & Anaya-Lara, O., 2018. "A review on frequency support provision by wind power plants: Current and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2071-2087.
    5. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    6. Majzoobi, Alireza & Khodaei, Amin, 2017. "Application of microgrids in providing ancillary services to the utility grid," Energy, Elsevier, vol. 123(C), pages 555-563.
    7. Henning Thiesen & Clemens Jauch & Arne Gloe, 2016. "Design of a System Substituting Today’s Inherent Inertia in the European Continental Synchronous Area," Energies, MDPI, vol. 9(8), pages 1-12, July.
    8. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    9. Sarabi, Siyamak & Davigny, Arnaud & Courtecuisse, Vincent & Riffonneau, Yann & Robyns, Benoît, 2016. "Potential of vehicle-to-grid ancillary services considering the uncertainties in plug-in electric vehicle availability and service/localization limitations in distribution grids," Applied Energy, Elsevier, vol. 171(C), pages 523-540.
    10. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    11. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    12. Eid, Cherrelle & Bollinger, L. Andrew & Koirala, Binod & Scholten, Daniel & Facchinetti, Emanuele & Lilliestam, Johan & Hakvoort, Rudi, 2016. "Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?," Energy, Elsevier, vol. 114(C), pages 913-922.
    13. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    14. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    15. Verzijlbergh, R.A. & De Vries, L.J. & Dijkema, G.P.J. & Herder, P.M., 2017. "Institutional challenges caused by the integration of renewable energy sources in the European electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 660-667.
    16. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    17. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    18. Cherrelle Eid & Paul Codani & Yannick Perez & Javier Reneses & Rudi Hakvoort, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Post-Print hal-01792419, HAL.
    19. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    20. Kirby, Brendan & Milligan, Michael, 2008. "An Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems," The Electricity Journal, Elsevier, vol. 21(7), pages 30-42.
    21. Abhimanyu Kaushal & Dirk Van Hertem, 2019. "An Overview of Ancillary Services and HVDC Systems in European Context," Energies, MDPI, vol. 12(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    2. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    3. Johansson, Petter & Vendel, Martin & Nuur, Cali, 2020. "Integrating distributed energy resources in electricity distribution systems: An explorative study of challenges facing DSOs in Sweden," Utilities Policy, Elsevier, vol. 67(C).
    4. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    5. Kara, Güray & Tomasgard, Asgeir & Farahmand, Hossein, 2022. "Characterizing flexibility in power markets and systems," Utilities Policy, Elsevier, vol. 75(C).
    6. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series 022, World Institute for Development Economic Research (UNU-WIDER).
    8. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    9. Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.
    10. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Stawska, Anna & Romero, Natalia & de Weerdt, Mathijs & Verzijlbergh, Remco, 2021. "Demand response: For congestion management or for grid balancing?," Energy Policy, Elsevier, vol. 148(PA).
    12. Guray Kara & Asgeir Tomasgard & Hossein Farahmand, 2021. "Characterization of flexible electricity in power and energy markets," Papers 2109.03000, arXiv.org.
    13. Voulis, Nina & van Etten, Max J.J. & Chappin, Émile J.L. & Warnier, Martijn & Brazier, Frances M.T., 2019. "Rethinking European energy taxation to incentivise consumer demand response participation," Energy Policy, Elsevier, vol. 124(C), pages 156-168.
    14. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series wp-2016-22, World Institute for Development Economic Research (UNU-WIDER).
    15. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    16. Fernando J. Lanas & Francisco J. Martínez-Conde & Diego Alvarado & Rodrigo Moreno & Patricio Mendoza-Araya & Guillermo Jiménez-Estévez, 2020. "Non-Strategic Capacity Withholding from Distributed Energy Storage within Microgrids Providing Energy and Reserve Services," Energies, MDPI, vol. 13(19), pages 1-14, October.
    17. Simone Minniti & Niyam Haque & Phuong Nguyen & Guus Pemen, 2018. "Local Markets for Flexibility Trading: Key Stages and Enablers," Energies, MDPI, vol. 11(11), pages 1-21, November.
    18. Silveira, Jose Ronaldo & Brandao, Danilo Iglesias & Fernandes, Nicolas T.D. & Uturbey, Wadaed & Cardoso, Braz, 2021. "Multifunctional dispatchable microgrids," Applied Energy, Elsevier, vol. 282(PA).
    19. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    20. Cramer, Wilhelm & Schumann, Klemens & Andres, Michael & Vertgewall, Chris & Monti, Antonello & Schreck, Sebastian & Metzger, Michael & Jessenberger, Stefan & Klaus, Joachim & Brunner, Christoph & Heri, 2021. "A simulative framework for a multi-regional assessment of local energy markets – A case of large-scale electric vehicle deployment in Germany," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:917-:d:322017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.