IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp117-130.html
   My bibliography  Save this article

Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment

Author

Listed:
  • Guandalini, Giulio
  • Campanari, Stefano
  • Romano, Matteo C.

Abstract

Limited dispatchability of wind parks and unexpected grid power injections create unbalances between the generated electric power and the actual required power that has to be reduced for proper operation of the electrical grid. The increasing amount of renewable energy sources stresses this problem in several countries, where the responses in terms of reinforcement of transmission lines and ancillary services are not sufficiently fast or effective. In this study, we analyze the potential of a grid balancing system based on different combinations of traditional gas turbine based power plants with innovative ‘power-to-gas’ plants. Power-to-gas is a promising solution to balance the electric grid, based on water electrolysis, which can effectively contribute to reducing the uncertainty of dispatch plans. According to this system, the excess power produced by renewables is converted into hydrogen, which can be then injected into the natural gas grid. Different economic scenarios are assessed in this work, leading to a set of optimal sizes of the proposed system, using a statistical approach in order to estimate wind farm productivity and forecasting errors, as well as each component load conditions. Economic parameters, equivalent operating hours, CO2 emissions and lost wind energy are the main performances indexes considered in this work to compare gas turbine and electrolysis balancing systems. From an economic point of view, hybrid systems including both balancing technologies generally lead to the best performances. The scenario which leads to the highest power-to-gas capacity (with installed electrolysis power of about 6% of wind park nominal power) is determined coupling a mid-term perspective of reduction in investment costs with favorable energy market conditions or with incentives (“green-gas” or carbon taxes). In such conditions, an equivalence between the two technologies in terms of optimum installed power can be reached at an electricity-to-natural gas cost ratio between 1.8 and 2. In most interesting scenarios, the P2G system brings about a lower total wind electricity injected in the grid, due to wind-to-gas energy conversion, while it allows reducing energy losses due to grid congestion and curtailment of the wind park; however, the additional CO2 emissions due to gas turbines operation and due to the reduced electricity production tend to offset or to limit the positive effect of the carbon-free gas production.

Suggested Citation

  • Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:117-130
    DOI: 10.1016/j.apenergy.2015.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    2. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    3. Burkhardt, Marko & Busch, Günter, 2013. "Methanation of hydrogen and carbon dioxide," Applied Energy, Elsevier, vol. 111(C), pages 74-79.
    4. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    5. Pearre, Nathaniel S. & Swan, Lukas G., 2015. "Technoeconomic feasibility of grid storage: Mapping electrical services and energy storage technologies," Applied Energy, Elsevier, vol. 137(C), pages 501-510.
    6. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    7. Rivarolo, M. & Magistri, L. & Massardo, A.F., 2014. "Hydrogen and methane generation from large hydraulic plant: Thermo-economic multi-level time-dependent optimization," Applied Energy, Elsevier, vol. 113(C), pages 1737-1745.
    8. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    2. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    3. Deetjen, Thomas A. & Martin, Henry & Rhodes, Joshua D. & Webber, Michael E., 2018. "Modeling the optimal mix and location of wind and solar with transmission and carbon pricing considerations," Renewable Energy, Elsevier, vol. 120(C), pages 35-50.
    4. Benato, Alberto & Stoppato, Anna, 2018. "Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system," Energy, Elsevier, vol. 147(C), pages 155-168.
    5. Telaretti, E. & Dusonchet, L., 2017. "Stationary battery technologies in the U.S.: Development Trends and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 380-392.
    6. La Fata, Alice & Brignone, Massimo & Procopio, Renato & Bracco, Stefano & Delfino, Federico & Barbero, Giulia & Barilli, Riccardo, 2024. "An energy management system to schedule the optimal participation to electricity markets and a statistical analysis of the bidding strategies over long time horizons," Renewable Energy, Elsevier, vol. 228(C).
    7. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    8. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    9. Furuoka, Fumitaka, 2017. "Renewable electricity consumption and economic development: New findings from the Baltic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 450-463.
    10. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    11. Norberto Martinez & Alejandra Tabares & John F. Franco, 2021. "Generation of Alternative Battery Allocation Proposals in Distribution Systems by the Optimization of Different Economic Metrics within a Mathematical Model," Energies, MDPI, vol. 14(6), pages 1-17, March.
    12. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    14. Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
    15. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    17. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    18. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    19. Seda Canbulat & Kutlu Balci & Onder Canbulat & I. Safak Bayram, 2021. "Techno-Economic Analysis of On-Site Energy Storage Units to Mitigate Wind Energy Curtailment: A Case Study in Scotland," Energies, MDPI, vol. 14(6), pages 1-20, March.
    20. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:117-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.