IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v190y2024ipas1364032123009073.html
   My bibliography  Save this article

Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty

Author

Listed:
  • Kim, Sunwoo
  • Choi, Yechan
  • Park, Joungho
  • Adams, Derrick
  • Heo, Seongmin
  • Lee, Jay H.

Abstract

Given the steep rises in renewable energy's proportion in the global energy mix expected over several decades, a systematic way to plan the long-term deployment is needed. The main challenges are how to handle the significant uncertainties in technologies and market dynamics over a large time horizon. The problem is further complicated by the fast-timescale volatility of renewable energy sources, potentially causing grid instability and unfulfilled demands. As a remedy, energy storage and power-to-hydrogen systems are considered in conjunction with energy management system but doing so raises the complexity of the planning problem further. In this work, the long-term capacity planning for a hybrid microgrid (HM) system is formulated as a multi-period stochastic decision problem that considers uncertainties occurring at multiple timescales. Long-term capacity decisions are inherently linked with energy dispatch and storage decisions occurring at fast-timescale and it is best to solve for them simultaneously. However, the computational demand for solving it becomes quickly intractable with problem size. To this end, we propose to develop a Markov decision process (MDP) formulation of the problem and use simulation-based reinforcement learning for multi-period capacity investments of the planning horizon. The MDP includes the policies used for dispatch and storage operation, which are represented by linear programming as a part of the simulation model. The effectiveness of our proposed method is demonstrated with a case study, where decisions over multiple decades are considered along with various uncertainties of multi-timescales. Economic and environmental assessments are performed, providing valuable guidelines for government's energy policy.

Suggested Citation

  • Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
  • Handle: RePEc:eee:rensus:v:190:y:2024:i:pa:s1364032123009073
    DOI: 10.1016/j.rser.2023.114049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Jiayi, Huang & Chuanwen, Jiang & Rong, Xu, 2008. "A review on distributed energy resources and MicroGrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2472-2483, December.
    3. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    6. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    7. Abdin, Adam F. & Caunhye, Aakil & Zio, Enrico & Cardin, Michel-Alexandre, 2022. "Optimizing generation expansion planning with operational uncertainty: A multistage adaptive robust approach," Applied Energy, Elsevier, vol. 306(PA).
    8. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    10. Arent, Douglas J. & Green, Peter & Abdullah, Zia & Barnes, Teresa & Bauer, Sage & Bernstein, Andrey & Berry, Derek & Berry, Joe & Burrell, Tony & Carpenter, Birdie & Cochran, Jaquelin & Cortright, Ran, 2022. "Challenges and opportunities in decarbonizing the U.S. energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Zhu, Xingyi & Zhan, Xiangyan & Liang, Hao & Zheng, Xuyue & Qiu, Yuwei & Lin, Jian & Chen, Jincan & Meng, Chao & Zhao, Yingru, 2020. "The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects," Renewable Energy, Elsevier, vol. 146(C), pages 2700-2715.
    12. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    13. Lee, Kyung-Sook & Kim, Ju-Hee & Yoo, Seung-Hoon, 2021. "Would people pay a price premium for electricity from domestic wind power facilities? The case of South Korea," Energy Policy, Elsevier, vol. 156(C).
    14. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    15. Yu, Jiah & Ryu, Jun-Hyung & Lee, In-beum, 2019. "A stochastic optimization approach to the design and operation planning of a hybrid renewable energy system," Applied Energy, Elsevier, vol. 247(C), pages 212-220.
    16. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    18. Park, Joungho & Hwan Ryu, Kyung & Kim, Chang-Hee & Chul Cho, Won & Kim, MinJoong & Hun Lee, Jae & Cho, Hyun-Seok & Lee, Jay H., 2023. "Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis," Applied Energy, Elsevier, vol. 340(C).
    19. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    20. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    21. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    22. Mehleri, E.D. & Sarimveis, H. & Markatos, N.C. & Papageorgiou, L.G., 2013. "Optimal design and operation of distributed energy systems: Application to Greek residential sector," Renewable Energy, Elsevier, vol. 51(C), pages 331-342.
    23. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    24. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    25. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    26. Han, Seulki & Kim, Jiyong, 2019. "A multi-period MILP model for the investment and design planning of a national-level complex renewable energy supply system," Renewable Energy, Elsevier, vol. 141(C), pages 736-750.
    27. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2020. "Introducing reinforcement learning to the energy system design process," Applied Energy, Elsevier, vol. 262(C).
    28. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    29. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    30. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    31. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    32. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    33. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    34. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    35. Sakki, G.K. & Tsoukalas, I. & Kossieris, P. & Makropoulos, C. & Efstratiadis, A., 2022. "Stochastic simulation-optimization framework for the design and assessment of renewable energy systems under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    36. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    37. Gamarra, Carlos & Guerrero, Josep M., 2015. "Computational optimization techniques applied to microgrids planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 413-424.
    38. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.
    39. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    40. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    41. Scott, Ian J. & Botterud, Audun & Carvalho, Pedro M.S. & Silva, Carlos A. Santos, 2020. "Renewable energy support policy evaluation: The role of long-term uncertainty in market modelling," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    2. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    3. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    4. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    5. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. F, Feijoo & A, Pfeifer & L, Herc & D, Groppi & N, Duić, 2022. "A long-term capacity investment and operational energy planning model with power-to-X and flexibility technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    8. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    9. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    11. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I. & Muttaqi, K.M. & Moghavvemi, S., 2015. "Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 726-734.
    12. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    13. Galleguillos-Pozo, R. & Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2021. "Design of stand-alone electrification systems using fuzzy mathematical programming approaches," Energy, Elsevier, vol. 228(C).
    14. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    15. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    16. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    17. Lo Prete, Chiara & Hobbs, Benjamin F., 2016. "A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets," Applied Energy, Elsevier, vol. 169(C), pages 524-541.
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    19. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management – part II: System operation, power quality and protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 440-451.
    20. Khan, Muhammad Waseem & Wang, Jie, 2017. "The research on multi-agent system for microgrid control and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1399-1411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:190:y:2024:i:pa:s1364032123009073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.