IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8026-d956432.html
   My bibliography  Save this article

Fault Ride-Through Operation Analysis of Doubly Fed Induction Generator-Based Wind Energy Conversion Systems: A Comparative Review

Author

Listed:
  • Aftab Ahmed Ansari

    (Department of Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India)

  • Giribabu Dyanamina

    (Department of Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India)

Abstract

In present electrical power systems, wind energy conversion systems based on doubly fed induction generators represent one of the most commonly accepted systems in the global market due to their excellent performance under different power system operations. The high wind energy penetration rate makes it challenging for these wind turbines to follow grid code requirements. All operations of a wind energy system during a dip in voltage require special attention; these operations are critically known as fault ride-through and low voltage ride-through. In this paper, various fault ride-through techniques of doubly fed induction generator-based wind energy conversion systems, such as protective circuitry, reactive power injection, and control methods for transient and steady state operations, have been presented to improve the performance. During system disturbances, protective circuitry or control mechanisms are typically used to limit the over-current of the rotor and the generated inappropriate DC link over-voltage. Simultaneously, the reactive power injection system overcomes the reactive power scarcity and enhances the transient response, further limiting the DC bus voltage and rotor current. This review paper compares and suggests appropriate FRT methods that are driven by external modifications and internal system improvements. Furthermore, typical case studies are discussed to illustrate and support the FRT system. The impact of each case study was evaluated and analyzed using the results obtained from the MATLAB/Simulink application and the OPAL-RT (OP4500) real time simulator (RTS).

Suggested Citation

  • Aftab Ahmed Ansari & Giribabu Dyanamina, 2022. "Fault Ride-Through Operation Analysis of Doubly Fed Induction Generator-Based Wind Energy Conversion Systems: A Comparative Review," Energies, MDPI, vol. 15(21), pages 1-33, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8026-:d:956432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Attya, A.B. & Dominguez-Garcia, J.L. & Anaya-Lara, O., 2018. "A review on frequency support provision by wind power plants: Current and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2071-2087.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Cole & David Campos-Gaona & Adam Stock & Marcel Nedd, 2023. "A Critical Review of Current and Future Options for Wind Farm Participation in Ancillary Service Provision," Energies, MDPI, vol. 16(3), pages 1-18, January.
    2. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.
    3. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    4. Iker Elorza & Carlos Calleja & Aron Pujana-Arrese, 2019. "On Wind Turbine Power Delta Control," Energies, MDPI, vol. 12(12), pages 1-25, June.
    5. Attya, A.B. & Anaya-Lara, O. & Leithead, W.E., 2018. "Novel concept of renewables association with synchronous generation for enhancing the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1035-1047.
    6. Alexander Rohr & Clemens Jauch, 2021. "Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator," Energies, MDPI, vol. 14(10), pages 1-20, May.
    7. Li, Le & Zhu, Donghai & Zou, Xudong & Hu, Jiabing & Kang, Yong & Guerrero, Josep M., 2023. "Review of frequency regulation requirements for wind power plants in international grid codes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    9. Baolong Nguyen Phung & Yuan-Kang Wu & Manh-Hai Pham, 2024. "Coordinated Frequency Regulation between DFIG-VSWTs and BESS Hybrid Systems," Energies, MDPI, vol. 17(13), pages 1-27, June.
    10. Bo Xu & Linwei Zhang & Yin Yao & Xiangdong Yu & Yixin Yang & Dongdong Li, 2021. "Virtual Inertia Coordinated Allocation Method Considering Inertia Demand and Wind Turbine Inertia Response Capability," Energies, MDPI, vol. 14(16), pages 1-15, August.
    11. Antonio Pepiciello & José Luis Domínguez-García & Alfredo Vaccaro, 2022. "The Impact of Frequency Support by Wind Turbines on the Small-Signal Stability of Power Systems," Energies, MDPI, vol. 15(22), pages 1-20, November.
    12. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    13. José Calixto Lopes & Thales Sousa, 2022. "Transmission System Electromechanical Stability Analysis with High Penetration of Renewable Generation and Battery Energy Storage System Application," Energies, MDPI, vol. 15(6), pages 1-23, March.
    14. Yuhong Wang & Jie Zhu & Qi Zeng & Zongsheng Zheng & Guangyuan Yu & Aihui Yin, 2021. "Frequency Coordinated Control Strategy for an HVDC Sending-End System with Wind Power Integration Based on Fuzzy Logic Control," Energies, MDPI, vol. 14(19), pages 1-25, September.
    15. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
    17. Ayman B. Attya & Adam Vickers, 2021. "Operation and Control of a Hybrid Power Plant with the Capability of Grid Services Provision," Energies, MDPI, vol. 14(13), pages 1-15, June.
    18. Anukriti Pokhriyal & José Luis Domínguez-García & Pedro Gómez-Romero, 2022. "Impact of Battery Energy System Integration in Frequency Control of an Electrical Grid with Wind Power," Clean Technol., MDPI, vol. 4(4), pages 1-15, October.
    19. Xu Wang & Yanxia Shen, 2019. "Fault Tolerant Control of DFIG-Based Wind Energy Conversion System Using Augmented Observer," Energies, MDPI, vol. 12(4), pages 1-12, February.
    20. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2019. "Market-based participation of energy storage scheme to support renewable energy sources for the procurement of energy and spinning reserve," Renewable Energy, Elsevier, vol. 135(C), pages 326-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8026-:d:956432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.