Participation of wind power plants in system frequency control: Review of grid code requirements and control methods
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2014.03.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
- Abdelkafi, Achraf & Krichen, Lotfi, 2011. "New strategy of pitch angle control for energy management of a wind farm," Energy, Elsevier, vol. 36(3), pages 1470-1479.
- Moutis, Panayiotis & Papathanassiou, Stavros A. & Hatziargyriou, Nikos D., 2012. "Improved load-frequency control contribution of variable speed variable pitch wind generators," Renewable Energy, Elsevier, vol. 48(C), pages 514-523.
- Yingcheng, Xue & Nengling, Tai, 2011. "Review of contribution to frequency control through variable speed wind turbine," Renewable Energy, Elsevier, vol. 36(6), pages 1671-1677.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
- Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
- Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
- Jafar Jallad & Saad Mekhilef & Hazlie Mokhlis, 2017. "Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review," Energies, MDPI, vol. 10(9), pages 1-29, August.
- Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
- Désiré D. Rasolomampionona & Michał Połecki & Krzysztof Zagrajek & Wiktor Wróblewski & Marcin Januszewski, 2024. "A Comprehensive Review of Load Frequency Control Technologies," Energies, MDPI, vol. 17(12), pages 1-77, June.
- Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
- Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
- Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
- Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
- Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
- Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
- Kroniger, Daniel & Madlener, Reinhard, 2014.
"Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility,"
Applied Energy, Elsevier, vol. 136(C), pages 931-946.
- Kroniger, Daniel & Madlener, Reinhard, 2013. "Hydrogen Storage for Wind Parks - A Real Options Evaluation for an Optimal Investment in More Flexibility," FCN Working Papers 3/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
- Saher Javaid & Mineo Kaneko & Yasuo Tan, 2021. "Safe Operation Conditions of Electrical Power System Considering Power Balanceability among Power Generators, Loads, and Storage Devices," Energies, MDPI, vol. 14(15), pages 1-27, July.
- Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
- He, Qing & Li, Guoqing & Lu, Chang & Du, Dongmei & Liu, Wenyi, 2019. "A compressed air energy storage system with variable pressure ratio and its operation control," Energy, Elsevier, vol. 169(C), pages 881-894.
More about this item
Keywords
Primary frequency control; Wind power plants; Deloading methods; Grid codes; Synthetic inertia;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:34:y:2014:i:c:p:551-564. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.