IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip2p1051-1062.html
   My bibliography  Save this article

Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia

Author

Listed:
  • Ko, Chun-Han
  • Chaiprapat, Sumate
  • Kim, Lee-Hyung
  • Hadi, Pejman
  • Hsu, Shu-Chien
  • Leu, Shao-Yuan

Abstract

Climate change is receiving an ever-increasing attention due to the accelerated global warming. Undoubtedly, CO2 from anthropogenic sources is the major contributor to this undesirable effect and thus, there has been a growing attempt to curb it. Utilization of biofuels to replace fossil fuels has been considered a viable method to mitigate CO2 emissions. However, there has been some concern about the indirect greenhouse gas emissions from the production and consumption of biofuels, such as land-use change, carbon leakage, and biomass transportation. It was suggested that these indirect factors can increase the CO2 emission and may offset the benefits of CO2 sequestration from biofuel utilization. In this study, all these challenges in biofuel production have been comprehensively reviewed and the importance of using the agricultural residues for biofuel production in countries with high reliance on agricultural development has been emphasized upon. A case study for the utilization of the agricultural residues in the Great Mekong Subregion (GMS) for biofuel production has been presented and the carbon balance for different bioenergy production scenarios in five Southeast Asian countries has been calculated. The results of the regression models show that Thailand and Lao PDR have the highest and lowest amounts of biomass residues per unit mass crop, respectively, suggesting the substantial differences in the harvesting technologies and/or economics of those countries. The overall annual CO2 sequestration potentials of the biomass for replacing gasoline through bioethanol production, and for substituting coal for power generation via anaerobic digestion and gasification have been determined to be approximately 104/Tg and 488Tg, respectively. It has been suggested that using the crop residues as feedstock for the second generation biofuel production without affecting the food market could indeed provide considerable carbon credits for sustainable agricultural development as the major industry in the developing countries.

Suggested Citation

  • Ko, Chun-Han & Chaiprapat, Sumate & Kim, Lee-Hyung & Hadi, Pejman & Hsu, Shu-Chien & Leu, Shao-Yuan, 2017. "Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1051-1062.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p2:p:1051-1062
    DOI: 10.1016/j.rser.2016.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116002756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.03.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piroli, Giuseppe & Rajcaniova, Miroslava & Ciaian, Pavel & Kancs, d׳Artis, 2015. "From a rise in B to a fall in C? SVAR analysis of environmental impact of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 921-930.
    2. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    3. Pode, Ramchandra, 2015. "Battery charging stations for home lighting in Mekong region countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 543-560.
    4. Grafton, R. Quentin & Kompas, Tom & Long, Ngo Van & To, Hang, 2014. "US biofuels subsidies and CO2 emissions: An empirical test for a weak and a strong green paradox," Energy Policy, Elsevier, vol. 68(C), pages 550-555.
    5. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    6. Kraxner, F. & Aoki, K. & Kindermann, G. & Leduc, S. & Albrecht, F. & Liu, J. & Yamagata, Y., 2016. "Bioenergy and the city – What can urban forests contribute?," Applied Energy, Elsevier, vol. 165(C), pages 990-1003.
    7. Mohammadi, Maedeh & Najafpour, Ghasem D. & Younesi, Habibollah & Lahijani, Pooya & Uzir, Mohamad Hekarl & Mohamed, Abdul Rahman, 2011. "Bioconversion of synthesis gas to second generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4255-4273.
    8. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    9. Chen, Wei & Wu, Fangwei & Zhang, Jinhua, 2016. "Potential production of non-food biofuels in China," Renewable Energy, Elsevier, vol. 85(C), pages 939-944.
    10. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    11. Smith, A.L. & Klenk, N. & Wood, S. & Hewitt, N. & Henriques, I. & Yan, N. & Bazely, D.R., 2013. "Second generation biofuels and bioinvasions: An evaluation of invasive risks and policy responses in the United States and Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 30-42.
    12. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    13. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
    14. Sasaki, Nophea & Knorr, Wolfgang & Foster, David R. & Etoh, Hiroko & Ninomiya, Hiroshi & Chay, Sengtha & Kim, Sophanarith & Sun, Sengxi, 2009. "Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020," Applied Energy, Elsevier, vol. 86(Supplemen), pages 140-150, November.
    15. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    16. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    17. Ohimain, Elijah Ige, 2013. "A review of the Nigerian biofuel policy and incentives (2007)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 246-256.
    18. repec:lic:licosd:37115 is not listed on IDEAS
    19. Yang, Jun & Huang, Jikun & Qiu, Huanguang & Rozelle, Scott & Sombilla, Mercy A., 2009. "Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade," Applied Energy, Elsevier, vol. 86(Supplemen), pages 37-46, November.
    20. Golecha, Rajdeep & Gan, Jianbang, 2016. "Effects of corn stover year-to-year supply variability and market structure on biomass utilization and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 34-44.
    21. Diep, Nhu Quynh & Sakanishi, Kinya & Nakagoshi, Nobukazu & Fujimoto, Shinji & Minowa, Tomoaki, 2015. "Potential for rice straw ethanol production in the Mekong Delta, Vietnam," Renewable Energy, Elsevier, vol. 74(C), pages 456-463.
    22. Väisänen, S. & Havukainen, J. & Uusitalo, V. & Havukainen, M. & Soukka, R. & Luoranen, M., 2016. "Carbon footprint of biobutanol by ABE fermentation from corn and sugarcane," Renewable Energy, Elsevier, vol. 89(C), pages 401-410.
    23. Kazagic, A. & Smajevic, I., 2007. "Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass," Energy, Elsevier, vol. 32(10), pages 2006-2016.
    24. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    25. Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
    26. Sukkasi, Sittha & Chollacoop, Nuwong & Ellis, Wyn & Grimley, Simon & Jai-In, Samai, 2010. "Challenges and considerations for planning toward sustainable biodiesel development in developing countries: Lessons from the Greater Mekong Subregion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3100-3107, December.
    27. Watcharejyothin, Mayurachat & Shrestha, Ram M., 2009. "Regional energy resource development and energy security under CO2 emission constraint in the greater Mekong sub-region countries (GMS)," Energy Policy, Elsevier, vol. 37(11), pages 4428-4441, November.
    28. Koizumi, Tatsuji, 2015. "Biofuels and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 829-841.
    29. Tara W. Hudiburg & WeiWei Wang & Madhu Khanna & Stephen P. Long & Puneet Dwivedi & William J. Parton & Melannie Hartman & Evan H. DeLucia, 2016. "Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    30. Withers, Mitch R. & Malina, Robert & Barrett, Steven R.H., 2015. "Carbon, climate, and economic breakeven times for biofuel from woody biomass from managed forests," Ecological Economics, Elsevier, vol. 112(C), pages 45-52.
    31. Silalertruksa, Thapat & Gheewala, Shabbir H., 2009. "Environmental sustainability assessment of bio-ethanol production in Thailand," Energy, Elsevier, vol. 34(11), pages 1933-1946.
    32. Ruth Hall, 2011. "Land grabbing in Southern Africa: the many faces of the investor rush," Review of African Political Economy, Taylor & Francis Journals, vol. 38(128), pages 193-214, June.
    33. Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
    34. Akorede, M.F. & Hizam, H. & Ab Kadir, M.Z.A. & Aris, I. & Buba, S.D., 2012. "Mitigating the anthropogenic global warming in the electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2747-2761.
    35. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    36. Adams, P.W.R. & Mezzullo, W.G. & McManus, M.C., 2015. "Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities," Energy Policy, Elsevier, vol. 87(C), pages 95-109.
    37. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    2. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    3. Mei-Yun Chang & Wu-Jang Huang, 2020. "A Practical Case Report on the Node Point of a Butterfly Model Circular Economy: Synthesis of a New Hybrid Mineral–Hydrothermal Fertilizer for Rice Cropping," Sustainability, MDPI, vol. 12(3), pages 1-7, February.
    4. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    5. Juan Calero & Diego Luna & Carlos Luna & Felipa M. Bautista & Beatriz Hurtado & Antonio A. Romero & Alejandro Posadillo & Rafael Estevez, 2019. "Rhizomucor miehei Lipase Supported on Inorganic Solids, as Biocatalyst for the Synthesis of Biofuels: Improving the Experimental Conditions by Response Surface Methodology," Energies, MDPI, vol. 12(5), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    2. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    3. Gohin, Alexandre, 2016. "Understanding the revised CARB estimates of the land use changes and greenhouse gas emissions induced by biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 402-412.
    4. Kumar, S. & Shrestha, Pujan & Abdul Salam, P., 2013. "A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 822-836.
    5. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    6. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    7. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    8. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    9. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.
    10. Graham von Maltitz, 2017. "Options for suitable biofuel farming: Experience from Southern Africa," WIDER Working Paper Series wp-2017-100, World Institute for Development Economic Research (UNU-WIDER).
    11. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    12. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    13. Kauffman, Nathan & Dumortier, Jerome & Hayes, Dermot J. & Brown, Robert C. & Laird, David, 2014. "Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity," ISU General Staff Papers 201404010700001488, Iowa State University, Department of Economics.
    14. Graham von Maltitz, 2017. "Options for suitable biofuel farming: Experience from Southern Africa," WIDER Working Paper Series 100, World Institute for Development Economic Research (UNU-WIDER).
    15. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    16. Hao Lv & Hao Ding & Dequn Zhou & Peng Zhou, 2014. "A Site Selection Model for a Straw-Based Power Generation Plant with CO 2 Emissions," Sustainability, MDPI, vol. 6(10), pages 1-16, October.
    17. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    18. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    19. Grigiante, M. & Brighenti, M. & Antolini, D., 2016. "A generalized activation energy equation for torrefaction of hardwood biomasses based on isoconversional methods," Renewable Energy, Elsevier, vol. 99(C), pages 1318-1326.
    20. Shah, Imran Hussain & Hiles, Charlie & Morley, Bruce, 2018. "How do oil prices, macroeconomic factors and policies affect the market for renewable energy?," Applied Energy, Elsevier, vol. 215(C), pages 87-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p2:p:1051-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.