IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp530-542.html
   My bibliography  Save this article

Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia

Author

Listed:
  • Pode, Ramchandra
  • Diouf, Boucar
  • Pode, Gayatri

Abstract

The role of energy in overall social and economical developments is well recognized. However, most energy providers are reluctant to venture in rural regions of developing countries. These regions are generally characterized by: low-income populations, minimum access to electricity, rare access to financial services or loans. In this paper we present the potential of rice husk for rural electrification in Cambodia. Rice husk is locally abundant at almost no cost, with a production over 9.3 million tons paddy rice in 2014 for a total population of about 15 million people. The conversion of rice husk into electricity through gasification or thermally generated electricity is a well-known technology. Rice husk can contribute in a sustainable manner to grant access to electricity to Cambodian rural population and is more reliable and competitive with reference to other renewable energy sources of electricity. The present investigation focuses on the study of self-sustaining energy service model to provide grid quality power to rural populations without the need of subsidies. In Cambodia, many rice mills are operating in rural and semi-urban areas. Some of these mills are now using rice husk for electricity production for industries and rural households, generally for lighting at low cost. We believe that the power systems focusing on both power requirements for the industry such rice mills and power requirements for the people living in the neighboring villages/rural areas at affordable tariff could become the most appropriate solution for the sustainable rural electrification. Along with the potential of rice husk for rural electrification in Cambodia, we present a financially viable business model to provide the grid quality power to rural population without grant or subsidy.

Suggested Citation

  • Pode, Ramchandra & Diouf, Boucar & Pode, Gayatri, 2015. "Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 530-542.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:530-542
    DOI: 10.1016/j.rser.2015.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115000283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    2. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    3. Hiloidhari, M. & Baruah, D.C., 2011. "Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1885-1892, May.
    4. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    5. Kirkels, Arjan F. & Verbong, Geert P.J., 2011. "Biomass gasification: Still promising? A 30-year global overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 471-481, January.
    6. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Andriyana, A., 2011. "Current energy usage and sustainable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4370-4377.
    7. Shackley, Simon & Carter, Sarah & Knowles, Tony & Middelink, Erik & Haefele, Stephan & Sohi, Saran & Cross, Andrew & Haszeldine, Stuart, 2012. "Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues," Energy Policy, Elsevier, vol. 42(C), pages 49-58.
    8. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    9. Marcin Siedlecki & Wiebren De Jong & Adrian H.M. Verkooijen, 2011. "Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review," Energies, MDPI, vol. 4(3), pages 1-46, March.
    10. Essam Yassin Mohammed & Shannon Wang & Gary Kawaguchi, 2013. "Making Growth Green and Inclusive: The Case of Cambodia," OECD Green Growth Papers 2013/8, OECD Publishing.
    11. Sawangphol, Narumitr & Pharino, Chanathip, 2011. "Status and outlook for Thailand's low carbon electricity development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 564-573, January.
    12. Javadi, F.S. & Rismanchi, B. & Sarraf, M. & Afshar, O. & Saidur, R. & Ping, H.W. & Rahim, N.A., 2013. "Global policy of rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 402-416.
    13. Leung, Dennis Y. C. & Yin, X. L. & Wu, C. Z., 2004. "A review on the development and commercialization of biomass gasification technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 565-580, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    2. Hong Nam Nguyen & Hoai-Son Nguyen & Minh Ha-Duong & Laurent van de Steene, 2016. "Biomass gasification in Southeast Asia: Factors influencing technology adoption in Cambodia," Working Papers hal-01422206, HAL.
    3. Jean-Claude Berthélemy & Mathilde Maurel, 2021. "A new approach for evaluation of the economic impact of decentralized electrification projects," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03164719, HAL.
    4. You, Siming & Tong, Huanhuan & Armin-Hoiland, Joel & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia," Applied Energy, Elsevier, vol. 208(C), pages 495-510.
    5. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    6. Azevedo, Susana Garrido & Sequeira, Tiago & Santos, Marcelo & Mendes, Luis, 2019. "Biomass-related sustainability: A review of the literature and interpretive structural modeling," Energy, Elsevier, vol. 171(C), pages 1107-1125.
    7. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    2. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    3. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    4. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    5. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    6. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    7. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    8. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Ramamurthi, Pooja Vijay & Fernandes, Maria Cristina & Nielsen, Per Sieverts & Nunes, Clemente Pedro, 2016. "Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis," Energy, Elsevier, vol. 111(C), pages 620-629.
    10. Pio, D.T. & Tarelho, L.A.C. & Pinto, R.G. & Matos, M.A.A. & Frade, J.R. & Yaremchenko, A. & Mishra, G.S. & Pinto, P.C.R., 2018. "Low-cost catalysts for in-situ improvement of producer gas quality during direct gasification of biomass," Energy, Elsevier, vol. 165(PB), pages 442-454.
    11. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    12. Hasan, Md. Yeasir & Monir, Minhaj Uddin & Ahmed, Mohammad Tofayal & Aziz, Azrina Abd & Shovon, Shaik Muntasir & Ahamed Akash, Faysal & Hossain Khan, Mohammad Forrukh & Faruque, Md. Jamal & Islam Rifat, 2022. "Sustainable energy sources in Bangladesh: A review on present and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    14. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    15. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    16. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    17. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    18. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    19. Chitawo, Maxon L. & Chimphango, Annie F.A., 2017. "A synergetic integration of bioenergy and rice production in rice farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 58-67.
    20. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:530-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.