IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v29y2014icp854-864.html
   My bibliography  Save this article

A review on methods of flue gas cleaning from combustion of biomass

Author

Listed:
  • Singh, Renu
  • Shukla, Ashish

Abstract

Application of renewable energy technology is essential for achieving zero carbon buildings within the timescale envisaged by the UK government and the EU because the carbon intensity of the grid will still be high (well above 70% of current level) by 2016 and 2019. The biomass is a key renewable energy source, but its use in buildings is often affected by the emission of particulates and other pollutants in the waste gas, resulting in significant resistant to the technology by building users. The proposed research investigated various ways of removing pollutants, from the exhaust gas of biomass boilers. The review of literature shows that low cost and low maintenance technologies e.g. cyclones are preferred choices however they come with some limitation in removal of particulates. Recent advances in flue gas cleaning came with novel hybrid solutions to overcome traditionally used technologies for flue gas cleaning. Use of electrostatic preceptors with combination of other technologies is one example. The study found that it is difficult to obtain high removal efficiency for smaller particle range and require combination of technologies and improved hybrid solutions.

Suggested Citation

  • Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
  • Handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:854-864
    DOI: 10.1016/j.rser.2013.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113006643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    4. Qiu, Guoquan, 2013. "Testing of flue gas emissions of a biomass pellet boiler and abatement of particle emissions," Renewable Energy, Elsevier, vol. 50(C), pages 94-102.
    5. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    6. Nges, Ivo Achu & Liu, Jing, 2010. "Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 35(10), pages 2200-2206.
    7. Bhave, A.G. & Vyas, D.K. & Patel, J.B., 2008. "A wet packed bed scrubber-based producer gas cooling–cleaning system," Renewable Energy, Elsevier, vol. 33(7), pages 1716-1720.
    8. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Sitka & Wiesław Jodkowski & Piotr Szulc & Daniel Smykowski & Bogusław Szumiło, 2021. "Study of the Properties and Particulate Matter Content of the Gas from the Innovative Pilot-Scale Gasification Installation with Integrated Ceramic Filter," Energies, MDPI, vol. 14(22), pages 1-11, November.
    2. Gollmer, Christian & Höfer, Isabel & Kaltschmitt, Martin, 2021. "Laboratory-scale additive content assessment for aluminum-silicate-based wood chip additivation," Renewable Energy, Elsevier, vol. 164(C), pages 1471-1484.
    3. Singh, Renu & Shukla, Ashish & Tiwari, Sapna & Srivastava, Monika, 2014. "A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 713-728.
    4. Kougioumtzis, Michael Alexandros & Kanaveli, Ioanna Panagiota & Karampinis, Emmanouil & Grammelis, Panagiotis & Kakaras, Emmanuel, 2021. "Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency," Renewable Energy, Elsevier, vol. 171(C), pages 516-525.
    5. Thomas, Paul & Soren, Nirmala & Rumjit, Nelson Pynadathu & George James, Jake & Saravanakumar, M.P., 2017. "Biomass resources and potential of anaerobic digestion in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 718-730.
    6. Kiri Rodgers & Iain McLellan & Simon Cuthbert & Victoria Masaguer Torres & Andrew Hursthouse, 2019. "The Potential of Remedial Techniques for Hazard Reduction of Steel Process by Products: Impact on Steel Processing, Waste Management, the Environment and Risk to Human Health," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    7. Gaigalis, Vygandas & Skema, Romualdas, 2016. "A review on solid biofuel usage in Lithuania after the decommission of Ignalina NPP and compliance with the EU policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 974-988.
    8. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    10. Marzieh Bagheri & Marcus Öhman & Elisabeth Wetterlund, 2022. "Techno-Economic Analysis of Scenarios on Energy and Phosphorus Recovery from Mono- and Co-Combustion of Municipal Sewage Sludge," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    11. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    12. Poškas, Robertas & Sirvydas, Arūnas & Poškas, Povilas & Jouhara, Hussam & Striūgas, Nerijus & Pedišius, Nerijus & Valinčius, Vitas, 2018. "Investigation of warm gas clean-up of biofuel flue and producer gas using electrostatic precipitator," Energy, Elsevier, vol. 143(C), pages 943-949.
    13. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    14. Bartosz Ciupek & Andrzej Frąckowiak, 2024. "Review of Thermal Calculation Methods for Boilers—Perspectives on Thermal Optimization for Improving Ecological Parameters," Energies, MDPI, vol. 17(24), pages 1-15, December.
    15. Raheem, Abdur & Hassan, Mohammad Yusri & Shakoor, Rabia, 2016. "Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 264-275.
    16. Bartosz Ciupek & Karol Gołoś & Radosław Jankowski & Zbigniew Nadolny, 2021. "Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases," Energies, MDPI, vol. 14(20), pages 1-24, October.
    17. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    18. Natalia Cid & Juan Jesús Rico & Raquel Pérez-Orozco & Ana Larrañaga, 2021. "Experimental Study of the Performance of a Laboratory-Scale ESP with Biomass Combustion: Discharge Electrode Disposition, Dynamic Control Unit and Aging Effect," Sustainability, MDPI, vol. 13(18), pages 1-12, September.
    19. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Wan Isahak, Wan Nor Roslam & Che Ramli, Zatil Amali & Mohamed Hisham, Mohamed Wahab & Yarmo, Mohd Ambar, 2015. "The formation of a series of carbonates from carbon dioxide: Capturing and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 93-106.
    21. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.
    22. Schumacher, Felix & Nussbaumer, Thomas, 2023. "Four approaches for the year-round operation of wood-fired heating plants with low pollutant emissions," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    2. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    3. Ud Din, Zia & Zainal, Z.A., 2017. "The fate of SOFC anodes under biomass producer gas contaminants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1050-1066.
    4. Shen, Yafei & Wang, Junfeng & Ge, Xinlei & Chen, Mindong, 2016. "By-products recycling for syngas cleanup in biomass pyrolysis – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1246-1268.
    5. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    6. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    7. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    8. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Meloni, E. & Caldera, M. & Palma, V. & Pignatelli, V. & Gerardi, V., 2019. "Soot abatement from biomass boilers by means of open-cell foams filters," Renewable Energy, Elsevier, vol. 131(C), pages 745-754.
    10. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    11. Chiang, Kung-Yuh & Lu, Cheng-Han & Lin, Ming-Hui & Chien, Kuang-Li, 2013. "Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system," Energy, Elsevier, vol. 50(C), pages 47-53.
    12. Ge, Xumeng & Xu, Fuqing & Vasco-Correa, Juliana & Li, Yebo, 2016. "Giant reed: A competitive energy crop in comparison with miscanthus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 350-362.
    13. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    14. Thapa, Sunil & Indrawan, Natarianto & Bhoi, Prakashbhai R. & Kumar, Ajay & Huhnke, Raymond L., 2019. "Tar reduction in biomass syngas using heat exchanger and vegetable oil bubbler," Energy, Elsevier, vol. 175(C), pages 402-409.
    15. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    16. Huang, Zhen & Zheng, Anqing & Deng, Zhengbing & Wei, Guoqiang & Zhao, Kun & Chen, Dezhen & He, Fang & Zhao, Zengli & Li, Haibin & Li, Fanxing, 2020. "In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier," Energy, Elsevier, vol. 190(C).
    17. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    18. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    19. Pio, D.T. & Tarelho, L.A.C. & Pinto, R.G. & Matos, M.A.A. & Frade, J.R. & Yaremchenko, A. & Mishra, G.S. & Pinto, P.C.R., 2018. "Low-cost catalysts for in-situ improvement of producer gas quality during direct gasification of biomass," Energy, Elsevier, vol. 165(PB), pages 442-454.
    20. Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.

    More about this item

    Keywords

    Flue gas; Biomass; PM10; PM2.5; Air pollutant;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:854-864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.