IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v255y2019ics0306261919313546.html
   My bibliography  Save this article

A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials

Author

Listed:
  • Li, Shuang-Fei
  • Liu, Zhen-hua
  • Wang, Xue-Jiao

Abstract

Cold energy storage technology using solid–liquid phase change materials plays a very important role. Although many studies have covered applications of cold energy storage technology and introductions of cold storage materials, there is a relatively insufficient comprehensive review in this field compared with other energy storage technologies such as hot energy storage. This review introduced the air condition with cold storage devices, conducted a classified study on various cold storage technologies or applications and introduced these cold storage technologies and phase change materials whose phase change temperatures are in the range of 7–14 °C in detail. Meanwhile, the key issues to be solved in further research on cold storage technology are proposed. The results of the limited available references have shown that cold storage technology using PCMs has great potential in various fields; however, the present research work is still in its initial stage and requires further development.

Suggested Citation

  • Li, Shuang-Fei & Liu, Zhen-hua & Wang, Xue-Jiao, 2019. "A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials," Applied Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919313546
    DOI: 10.1016/j.apenergy.2019.113667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919313546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shun-Hsiung Peng & Shang-Lien Lo, 2024. "An Economic Analysis of Energy Saving and Carbon Mitigation by the Use of Phase Change Materials for Cool Energy Storage for an Air Conditioning System—A Case Study," Energies, MDPI, vol. 17(4), pages 1-17, February.
    2. Morena Falcone & Danish Rehman & Matteo Dongellini & Claudia Naldi & Beatrice Pulvirenti & Gian Luca Morini, 2022. "Experimental Investigation on Latent Thermal Energy Storages (LTESs) Based on Pure and Copper-Foam-Loaded PCMs," Energies, MDPI, vol. 15(13), pages 1-13, July.
    3. Ahn, Jae Hwan & Kim, Hoon & Jeon, Yongseok & Kwon, Ki Hyun, 2022. "Performance characteristics of mobile cooling system utilizing ice thermal energy storage with direct contact discharging for a refrigerated truck," Applied Energy, Elsevier, vol. 308(C).
    4. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    5. Ahn, Jae Hwan & Kim, Hoon & Kim, Jong Hoon & Kim, Ji Young, 2023. "Evaporative cooling performance characteristics in ice thermal energy storage with direct contact discharging for food cold storage," Applied Energy, Elsevier, vol. 330(PA).
    6. Lu, Zhe & Wang, Sheliang & Ying, Honghao & Liu, Bo & Jia, Wurong & Xie, Jiangsheng & Sun, Yanwen, 2024. "Preparation and thermal properties of eutectic phase change materials (EPCMs) with nanographite addition for cold thermal energy storage," Energy, Elsevier, vol. 290(C).
    7. Nikkerdar, F. & Rahimi, M. & Ranjbar, A.A. & Pakrouh, R. & Bahrampoury, R., 2021. "Solar assisted thermal storage system for free heating applications in moderate climates: A case study," Energy, Elsevier, vol. 220(C).
    8. Mingzhen Wang & Eric Hu & Lei Chen, 2024. "TRNSYS Simulation of a Bi-Functional Solar-Thermal-Energy-Storage-Assisted Heat Pump System," Energies, MDPI, vol. 17(14), pages 1-16, July.
    9. Zhang, Zhigang & Liu, Qiaoli & Yao, Wanxiang & Zhang, Wei & Cao, Jingfu & He, Haiyan, 2022. "Research on temperature distribution characteristics and energy saving potential of wall implanted with heat pipes in heating season," Renewable Energy, Elsevier, vol. 195(C), pages 1037-1049.
    10. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
    11. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    12. Shun-Hsiung Peng & Shang-Lien Lo, 2023. "Hybrid (Optimal) Selection Model for Phase Change Materials Used in the Cold Energy Storage of Air Conditioning Systems," Energies, MDPI, vol. 17(1), pages 1-15, December.
    13. Li, Mu & Li, Chuanchang & Xie, Baoshan & Cao, Penghui & Liu, Daifei & Li, Yaxi & Peng, Meicheng & Tan, Zhenwei, 2023. "Emerging phase change cold storage gel originated from calcium chloride hexahydrate," Energy, Elsevier, vol. 284(C).
    14. Rocha, Thiago Torres Martins & Teggar, Mohamed & Trevizoli, Paulo Vinicius & de Oliveira, Raphael Nunes, 2023. "Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Kawasaki, Toshiyuki & Obara, Shin'ya, 2020. "CO2 hydrate heat cycle using a carbon fiber supported catalyst for gas hydrate formation processes," Applied Energy, Elsevier, vol. 269(C).
    16. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    17. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    18. Borhani, S.M. & Hosseini, M.J. & Pakrouh, R. & Ranjbar, A.A. & Nourian, A., 2021. "Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite," Renewable Energy, Elsevier, vol. 168(C), pages 1122-1140.
    19. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang, 2023. "Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: Role of bubble-driven flow," Renewable Energy, Elsevier, vol. 217(C).
    20. Liu, Yang & Sun, Yongjun & Gao, Dian-ce & Tan, Jiaqi & Chen, Yuxin, 2024. "Stacked ensemble learning approach for PCM-based double-pipe latent heat thermal energy storage prediction towards flexible building energy," Energy, Elsevier, vol. 294(C).
    21. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    22. Tan, Pepe & Lindberg, Patrik & Eichler, Kaia & Löveryd, Per & Johansson, Pär & Kalagasidis, Angela Sasic, 2020. "Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building," Applied Energy, Elsevier, vol. 276(C).
    23. Ewelina Radomska & Lukasz Mika & Karol Sztekler, 2020. "The Impact of Additives on the Main Properties of Phase Change Materials," Energies, MDPI, vol. 13(12), pages 1-34, June.
    24. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Kumar, Sreekala & Tee, Jackson & Seo, Yutaek & Linga, Praveen, 2022. "An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: Application for cold storage and transport," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919313546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.