IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4433-d841699.html
   My bibliography  Save this article

Study on Energy Efficiency of an Off-Grid Vending Machine with Compact Heat Exchangers and Low GWP Refrigerant Powered by Solar Energy

Author

Listed:
  • Răzvan Calotă

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Mihai Savaniu

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Alina Girip

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Ilinca Năstase

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Matei Răzvan Georgescu

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

  • Oana Tonciu

    (Department of Thermodynamic Sciences, Faculty of Building Services, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Blvd., 020396 Bucharest, Romania)

Abstract

The purpose of this research is to design an energy-efficient off-grid vending machine that has a refrigeration system powered by an environmentally friendly refrigerant. The paper presents details from the equipment’s design phase in terms of the resistance structure, photovoltaic panels area dimensioning, but also in terms of the necessary cooling load to be provided by the refrigeration system. The refrigerant chosen was R290 following a comparative analysis, which showed that it has an efficiency 6.6% higher than R134a. During the monitoring periods, the outdoors temperature varied between −4–28 °C, the relative humidity between 22–100% and yet only a slight indoor temperature variation of ±1.5 °C compared to the set value was recorded. The battery module managed to store enough energy from the photovoltaic panels to keep the vending machine functional through three consecutive days with adverse environmental conditions, as evidenced by the low variation of indoor temperature

Suggested Citation

  • Răzvan Calotă & Mihai Savaniu & Alina Girip & Ilinca Năstase & Matei Răzvan Georgescu & Oana Tonciu, 2022. "Study on Energy Efficiency of an Off-Grid Vending Machine with Compact Heat Exchangers and Low GWP Refrigerant Powered by Solar Energy," Energies, MDPI, vol. 15(12), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4433-:d:841699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massaguer, E. & Massaguer, A. & Pujol, T. & Comamala, M. & Montoro, L. & Gonzalez, J.R., 2019. "Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system," Energy, Elsevier, vol. 179(C), pages 306-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioan Mihail Savaniu & Alexandru-Polifron Chiriță & Oana Tonciu & Magdalena Culcea & Ancuta Neagu, 2023. "Neural-Network-Based Time Control for Microwave Oven Heating of Food Products Distributed by a Solar-Powered Vending Machine with Energy Management Considerations," Energies, MDPI, vol. 16(19), pages 1-22, October.
    2. Rocha, Thiago Torres Martins & Teggar, Mohamed & Trevizoli, Paulo Vinicius & de Oliveira, Raphael Nunes, 2023. "Potential of latent thermal energy storage for performance improvement in small-scale refrigeration units: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    4. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    5. Zhu, WenChao & Yang, Wenlong & Yang, Yang & Li, Yang & Li, Hao & Shi, Ying & Yan, Yonggao & Xie, Changjun, 2022. "Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions," Renewable Energy, Elsevier, vol. 197(C), pages 486-499.
    6. Carvalho, Rui & Martins, Jorge & Pacheco, Nuno & Puga, Hélder & Costa, Joaquim & Vieira, Rui & Goncalves, L.M. & Brito, Francisco P., 2023. "Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles," Energy, Elsevier, vol. 280(C).
    7. Massaguer, Albert & Massaguer, Eduard, 2021. "Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points," Energy, Elsevier, vol. 226(C).
    8. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    9. Pacheco, N. & Brito, F.P. & Vieira, R. & Martins, J. & Barbosa, H. & Goncalves, L.M., 2020. "Compact automotive thermoelectric generator with embedded heat pipes for thermal control," Energy, Elsevier, vol. 197(C).
    10. Ivan Ruiz Cózar & Toni Pujol & Eduard Massaguer & Albert Massaguer & Lino Montoro & Jose Ramon González & Martí Comamala & Samir Ezzitouni, 2021. "Effects of Module Spatial Distribution on the Energy Efficiency and Electrical Output of Automotive Thermoelectric Generators," Energies, MDPI, vol. 14(8), pages 1-16, April.
    11. Karol Tucki & Andrzej Wasiak & Olga Orynycz & Remigiusz Mruk, 2020. "Computer Simulation as a Tool for Managing the Technical Development of Methods for Diagnosing the Technical Condition of a Vehicle," Energies, MDPI, vol. 13(11), pages 1-24, June.
    12. Zhang, Ran & Zhang, Hui & Wang, Xu, 2021. "Lateral comparison of the coupling parameters on the novel hexagonal shaped cross flow thermoelectric generator," Energy, Elsevier, vol. 215(PB).
    13. Hsu, Ping-Chia & Saragih, Ahmad Abror & Huang, Mei-Jiau & Juang, Jia-Yang, 2022. "New machine functions using waste heat recovery: A case study of atmospheric pressure plasma jet," Energy, Elsevier, vol. 239(PD).
    14. Eduard Massaguer & Albert Massaguer & Eudald Balló & Ivan Ruiz Cózar & Toni Pujol & Lino Montoro & Martí Comamala, 2020. "Electrical Generation of a Ground-Level Solar Thermoelectric Generator: Experimental Tests and One-Year Cycle Simulation," Energies, MDPI, vol. 13(13), pages 1-18, July.
    15. Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
    16. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels," Energies, MDPI, vol. 14(5), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4433-:d:841699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.