IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1127-d1599338.html
   My bibliography  Save this article

Semantic-to-Instance Segmentation of Time-Invariant Offshore Wind Farms Using Sentinel-1 Time Series and Time-Shift Augmentation

Author

Listed:
  • Osmar Luiz Ferreira de Carvalho

    (Department of Electrical Engineering, University of Brasília, Brasília 70910-900, DF, Brazil)

  • Osmar Abílio de Carvalho Junior

    (Department of Geography, University of Brasília, Brasília 70910-900, DF, Brazil)

  • Anesmar Olino de Albuquerque

    (Department of Geography, University of Brasília, Brasília 70910-900, DF, Brazil)

  • Daniel Guerreiro e Silva

    (Department of Electrical Engineering, University of Brasília, Brasília 70910-900, DF, Brazil)

Abstract

The rapid expansion of offshore wind energy requires effective monitoring to balance renewable energy development with environmental and marine spatial planning. This study proposes a novel offshore wind farm detection methodology integrating Sentinel-1 SAR time series, a time-shift augmentation strategy, and semantic-to-instance segmentation transformation. The methodology consists of (1) constructing a dataset with offshore wind farms labeled from Sentinel-1 SAR time series, (2) applying a time-shift augmentation strategy by randomizing image sequences during training (avoiding overfitting due to chronological ordering), (3) evaluating six deep learning architectures (U-Net, U-Net++, LinkNet, DeepLabv3+, FPN, and SegFormer) across time-series lengths of 1, 5, 10, and 15 images, and (4) converting the semantic segmentation results into instance-level detections using Geographic Information System tools. The results show that increasing the time-series length from 1 to 15 images significantly improves performance, with the Intersection over Union increasing from 63.29% to 81.65% and the F-score from 77.52% to 89.90%, using the best model (LinkNet). Also, models trained with time-shift augmentation achieved a 25% higher IoU and an 18% higher F-score than those trained without it. The semantic-to-instance transformation achieved 99.7% overall quality in per-object evaluation, highlighting the effectiveness of our approach.

Suggested Citation

  • Osmar Luiz Ferreira de Carvalho & Osmar Abílio de Carvalho Junior & Anesmar Olino de Albuquerque & Daniel Guerreiro e Silva, 2025. "Semantic-to-Instance Segmentation of Time-Invariant Offshore Wind Farms Using Sentinel-1 Time Series and Time-Shift Augmentation," Energies, MDPI, vol. 18(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1127-:d:1599338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Xu, Wenxuan & Liu, Yongxue & Wu, Wei & Dong, Yanzhu & Lu, Wanyun & Liu, Yongchao & Zhao, Bingxue & Li, Huiting & Yang, Renfei, 2020. "Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by satellite image time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    5. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    7. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna de Sousa Gomes, Mateus & Faulstich de Paiva, Jane Maria & Aparecida da Silva Moris, Virgínia & Nunes, Andréa Oliveira, 2019. "Proposal of a methodology to use offshore wind energy on the southeast coast of Brazil," Energy, Elsevier, vol. 185(C), pages 327-336.
    2. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    4. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    5. Jijian Lian & Yue Zhao & Chong Lian & Haijun Wang & Xiaofeng Dong & Qi Jiang & Huan Zhou & Junni Jiang, 2018. "Application of an Eddy Current-Tuned Mass Damper to Vibration Mitigation of Offshore Wind Turbines," Energies, MDPI, vol. 11(12), pages 1-18, November.
    6. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    7. R, Hall & E, Topham & E, João, 2022. "Environmental Impact Assessment for the decommissioning of offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    9. Cheng-Dar Yue & Che-Chih Liu & Chien-Cheng Tu & Ta-Hui Lin, 2019. "Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources," Energies, MDPI, vol. 12(4), pages 1-24, February.
    10. Kim, Choong-Ki & Jang, Seonju & Kim, Tae Yun, 2018. "Site selection for offshore wind farms in the southwest coast of South Korea," Renewable Energy, Elsevier, vol. 120(C), pages 151-162.
    11. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    12. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    13. Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    15. Rippel, Daniel & Jathe, Nicolas & Lütjen, Michael & Szczerbicka, Helena & Freitag, Michael, 2019. "Integrated domain model for operative offshore installation planning," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 25-54, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    16. Kadoche, Elie & Gourvénec, Sébastien & Pallud, Maxime & Levent, Tanguy, 2023. "MARLYC: Multi-Agent Reinforcement Learning Yaw Control," Renewable Energy, Elsevier, vol. 217(C).
    17. Farrugia, R. & Sant, T. & Micallef, D., 2014. "Investigating the aerodynamic performance of a model offshore floating wind turbine," Renewable Energy, Elsevier, vol. 70(C), pages 24-30.
    18. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    19. Milanese, Marco & Tornese, Ljuba & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Numerical method for wind energy analysis applied to Apulia Region, Italy," Energy, Elsevier, vol. 128(C), pages 1-10.
    20. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1127-:d:1599338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.