IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i11d10.1038_s41560-021-00922-6.html
   My bibliography  Save this article

Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment

Author

Listed:
  • Kavya Madhu

    (University of Freiburg)

  • Stefan Pauliuk

    (University of Freiburg)

  • Sumukha Dhathri

    (University of Freiburg)

  • Felix Creutzig

    (Mercator Research Institute on Global Commons and Climate Change
    Technische Universität Berlin)

Abstract

Direct air capture (DAC) technologies remove carbon dioxide (CO2) from ambient air through chemical sorbents. Their scale-up is a backstop in many climate policy scenarios, but their environmental implications are debated. Here we present a comparative life-cycle assessment of two main DAC technologies coupled with carbon storage: temperature swing adsorption (TSA) and high-temperature aqueous solution (HT-Aq) DAC. Our results show that TSA DAC outperforms HT-Aq DAC by a factor of 1.3–10 in all environmental impact categories studied. With a low-carbon energy supply, HT-Aq and TSA DAC have a net carbon removal of up to 73% and 86% per ton of CO2 captured and stored. For the same climate change mitigation effect, TSA DAC needs about as much renewable energy and land occupation as a switch from gasoline to electric vehicles, but with approximately five times higher material consumption. Input requirements for chemical absorbents do not limit DAC scale-up.

Suggested Citation

  • Kavya Madhu & Stefan Pauliuk & Sumukha Dhathri & Felix Creutzig, 2021. "Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment," Nature Energy, Nature, vol. 6(11), pages 1035-1044, November.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:11:d:10.1038_s41560-021-00922-6
    DOI: 10.1038/s41560-021-00922-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00922-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00922-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Sina Hoseinpoori & David Pallarès & Filip Johnsson & Henrik Thunman, 2023. "A comparative exergy-based assessment of direct air capture technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-20, October.
    3. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Enric Prats-Salvado & Nathalie Monnerie & Christian Sattler, 2022. "Techno-Economic Assessment of the Integration of Direct Air Capture and the Production of Solar Fuels," Energies, MDPI, vol. 15(14), pages 1-14, July.
    5. Bansal, Sanchita & Singh, Shifali & Nangia, Priya, 2022. "Assessing the role of natural resource utilization in attaining select sustainable development goals in the era of digitalization," Resources Policy, Elsevier, vol. 79(C).
    6. Philipp C. Verpoort & Lukas Gast & Anke Hofmann & Falko Ueckerdt, 2024. "Impact of global heterogeneity of renewable energy supply on heavy industrial production and green value chains," Nature Energy, Nature, vol. 9(4), pages 491-503, April.
    7. Yang Qiu & Patrick Lamers & Vassilis Daioglou & Noah McQueen & Harmen-Sytze Boer & Mathijs Harmsen & Jennifer Wilcox & André Bardow & Sangwon Suh, 2022. "Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
    9. Marvin Bachmann & Christian Zibunas & Jan Hartmann & Victor Tulus & Sangwon Suh & Gonzalo Guillén-Gosálbez & André Bardow, 2023. "Towards circular plastics within planetary boundaries," Nature Sustainability, Nature, vol. 6(5), pages 599-610, May.
    10. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:11:d:10.1038_s41560-021-00922-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.