IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v158y2022ics1364032122000752.html
   My bibliography  Save this article

Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments

Author

Listed:
  • Cui, Yuanlong
  • Zhu, Jie
  • Zhang, Fan
  • Shao, Yiming
  • Xue, Yibing

Abstract

Solar photovoltaic thermal (PV/T) with phase change material (PCM) technology is one of the incentive research areas in renewable energy application aspect, which attracts increasingly attention in the globalized market to tackle climate change. The PV/T tube configuration and working fluid are investigated in this study to enable this technology become a superior candidate in energy systems, various interior tubes (such as micro-channel tube, winglets tape tube, wave tape tube, twisted tap tube, conical leaf tube and adding metal fins) and novel PCMs (including composite PCM, nano-PCM and their combination) are reviewed. The thermal regulation strategies, optimization methods and advanced nocturnal radiative cooling systems are inspected as well. Moreover, the PV/T system exergy, economic and environmental assessments are conducted. Furthermore, the perspectives, suggestions and future developments of the PV/T system with PCM module are explored to conquer the challenges and obstacles for the practical application. It is concluded that electrical efficiency of the PV/T system with PCM module could be increased about 3–5%, whereas the system thermal efficiency is improved around 20–30%, and the system cost could be reduced in the range of 15–20% resulting in less 6-year of payback period compared with those of the conventional PV/T system.

Suggested Citation

  • Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122000752
    DOI: 10.1016/j.rser.2022.112147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122000752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sharma, Ravi Kumar & Sari, Ahmet, 2020. "PCM integrated glass in glass tube solar collector for low and medium temperature applications: Thermodynamic & techno-economic approach," Energy, Elsevier, vol. 198(C).
    2. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    3. M. M. Sarafraz & Mohammad Reza Safaei & Arturo S. Leon & Iskander Tlili & Tawfeeq Abdullah Alkanhal & Zhe Tian & Marjan Goodarzi & M. Arjomandi, 2019. "Experimental Investigation on Thermal Performance of a PV/T-PCM (Photovoltaic/Thermal) System Cooling with a PCM and Nanofluid," Energies, MDPI, vol. 12(13), pages 1-16, July.
    4. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    5. Abadeh, Abazar & Rejeb, Oussama & Sardarabadi, Mohammad & Menezo, Christophe & Passandideh-Fard, Mohammad & Jemni, Abdelmajid, 2018. "Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs)," Energy, Elsevier, vol. 159(C), pages 1234-1243.
    6. Lu, Wei & Liu, Zhishan & Flor, Jan-Frederik & Wu, Yupeng & Yang, Mo, 2018. "Investigation on designed fins-enhanced phase change materials system for thermal management of a novel building integrated concentrating PV," Applied Energy, Elsevier, vol. 225(C), pages 696-709.
    7. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    8. Yuli Setyo Indartono & Aryadi Suwono & Fendy Yuseva Pratama, 2016. "Improving photovoltaics performance by using yellow petroleum jelly as phase change material," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 333-337.
    9. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Hu, Mingke & Zhao, Bin & Suhendri, S. & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Yang, Ronggui & Su, Yuehong & Pei, Gang, 2022. "Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate," Applied Energy, Elsevier, vol. 306(PB).
    11. Qiu, Zhongzhu & Ma, Xiaoli & Zhao, Xudong & Li, Peng & Ali, Samira, 2016. "Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system," Applied Energy, Elsevier, vol. 165(C), pages 260-271.
    12. Salem, M.R. & Elsayed, M.M. & Abd-Elaziz, A.A. & Elshazly, K.M., 2019. "Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques," Renewable Energy, Elsevier, vol. 138(C), pages 876-890.
    13. Hassan, Ali & Wahab, Abdul & Qasim, Muhammad Arslan & Janjua, Muhammad Mansoor & Ali, Muhammad Aon & Ali, Hafiz Muhammad & Jadoon, Tufail Rehman & Ali, Ejaz & Raza, Ahsan & Javaid, Noshairwan, 2020. "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system," Renewable Energy, Elsevier, vol. 145(C), pages 282-293.
    14. Hossain, M.S. & Pandey, A.K. & Selvaraj, Jeyraj & Rahim, Nasrudin Abd & Islam, M.M. & Tyagi, V.V., 2019. "Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 136(C), pages 1320-1336.
    15. Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material," Energy, Elsevier, vol. 147(C), pages 636-647.
    16. Pestana, Daniel Garigali & Rodrigues, Sandy & Morgado-Dias, F., 2018. "Environmental and economic analysis of solar systems in Madeira, Portugal," Utilities Policy, Elsevier, vol. 55(C), pages 31-40.
    17. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    18. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    19. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    20. Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
    21. Hu, Mingke & Pei, Gang & Wang, Qiliang & Li, Jing & Wang, Yunyun & Ji, Jie, 2016. "Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system," Applied Energy, Elsevier, vol. 179(C), pages 899-908.
    22. Ma, Zhenjun & Lin, Wenye & Sohel, M. Imroz, 2016. "Nano-enhanced phase change materials for improved building performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1256-1268.
    23. Koca, Ahmet & Oztop, Hakan F. & Koyun, Tansel & Varol, Yasin, 2008. "Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector," Renewable Energy, Elsevier, vol. 33(4), pages 567-574.
    24. Dhinesh Kumar, D. & Valan Arasu, A., 2018. "A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1669-1689.
    25. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    26. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    27. Yang, Xiaojiao & Sun, Liangliang & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling, 2018. "Experimental investigation on performance comparison of PV/T-PCM system and PV/T system," Renewable Energy, Elsevier, vol. 119(C), pages 152-159.
    28. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    29. Carmona, Mauricio & Palacio Bastos, Alberto & García, José Doria, 2021. "Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 172(C), pages 680-696.
    30. Mazman, Muhsin & Cabeza, Luisa F. & Mehling, Harald & Nogues, Miquel & Evliya, Hunay & Paksoy, Halime Ö., 2009. "Utilization of phase change materials in solar domestic hot water systems," Renewable Energy, Elsevier, vol. 34(6), pages 1639-1643.
    31. Khordehgah, Navid & Guichet, Valentin & Lester, Stephen P. & Jouhara, Hussam, 2019. "Computational study and experimental validation of a solar photovoltaics and thermal technology," Renewable Energy, Elsevier, vol. 143(C), pages 1348-1356.
    32. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    33. Hu, Mingke & Zhao, Bin & Li, Jing & Wang, Yunyun & Pei, Gang, 2017. "Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system," Energy, Elsevier, vol. 137(C), pages 419-430.
    34. Feliński, P. & Sekret, R., 2016. "Experimental study of evacuated tube collector/storage system containing paraffin as a PCM," Energy, Elsevier, vol. 114(C), pages 1063-1072.
    35. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    36. Yan, Tian & Xu, Xinhua & Gao, Jiajia & Luo, Yongqiang & Yu, Jinghua, 2020. "Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator," Energy, Elsevier, vol. 210(C).
    37. Franklin, J. Charles & Chandrasekar, M., 2019. "Performance enhancement of a single pass solar photovoltaic thermal system using staves in the trailing portion of the air channel," Renewable Energy, Elsevier, vol. 135(C), pages 248-258.
    38. David González-Peña & Iván Alonso-deMiguel & Montserrat Díez-Mediavilla & Cristina Alonso-Tristán, 2020. "Experimental Analysis of a Novel PV/T Panel with PCM and Heat Pipes," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    39. Yu, Ying & Long, Enshen & Chen, Xi & Yang, Hongxing, 2019. "Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin," Applied Energy, Elsevier, vol. 242(C), pages 931-941.
    40. Al-Waeli, Ali H.A. & Kazem, Hussein A. & Yousif, Jabar H. & Chaichan, Miqdam T. & Sopian, K., 2020. "Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance," Renewable Energy, Elsevier, vol. 145(C), pages 963-980.
    41. Hedayati-Mehdiabadi, Erfan & Sarhaddi, Faramarz & Sobhnamayan, Fatemeh, 2020. "Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector," Renewable Energy, Elsevier, vol. 145(C), pages 2409-2425.
    42. Gaur, Ankita & Ménézo, Christophe & Giroux--Julien, Stéphanie, 2017. "Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium," Renewable Energy, Elsevier, vol. 109(C), pages 168-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    2. Hossein Nabi & Mosayeb Gholinia & Mehdi Khiadani & Abdellah Shafieian, 2023. "Performance Enhancement of Photovoltaic-Thermal Modules Using a New Environmentally Friendly Paraffin Wax and Red Wine-rGO/H 2 O Nanofluid," Energies, MDPI, vol. 16(11), pages 1-20, May.
    3. Ranawade, Vishal & Nalwa, Kanwar Singh, 2023. "Multilayered PCMs-based cooling solution for photovoltaic modules: Modelling and experimental study," Renewable Energy, Elsevier, vol. 216(C).
    4. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying & Yao, Tingting, 2023. "Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study," Energy, Elsevier, vol. 264(C).
    5. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    6. Moaveni, Arman & Siavashi, Majid & Mousavi, Sepehr, 2024. "Passive and hybrid battery thermal management system by cooling flow control, employing nano-PCM, fins, and metal foam," Energy, Elsevier, vol. 288(C).
    7. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 217(C).
    8. Tian, Xinyi & Wang, Jun & Wang, Chuyao & Ji, Jie, 2023. "Comparison analysis of the glazed and unglazed curved water-based PV/T roofs in the non-heating season," Renewable Energy, Elsevier, vol. 205(C), pages 899-917.
    9. Sandooghdar, Siavash & Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh & Arabkoohsar, Ahmad, 2023. "Performance improvement of air-based solar photovoltaic/thermal collectors using wavy channels," Renewable Energy, Elsevier, vol. 211(C), pages 831-845.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    4. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    5. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    6. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    7. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    9. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    10. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    11. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    12. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    13. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    14. Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.
    15. Muhammad Aftab Rafiq & Liguo Zhang & Chih-Chun Kung, 2022. "A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China," SAGE Open, , vol. 12(2), pages 21582440221, June.
    16. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    17. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    18. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    19. Fu, Zaiguo & Liang, Xiaotian & Li, Yang & Li, Lingtong & Zhu, Qunzhi, 2021. "Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs," Renewable Energy, Elsevier, vol. 169(C), pages 308-317.
    20. Sen, Ecem & Celiktas, Melih Soner, 2024. "Performance evaluation and thermal stabilization of photovoltaic panels using phase-change materials," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122000752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.