IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1348-1356.html
   My bibliography  Save this article

Computational study and experimental validation of a solar photovoltaics and thermal technology

Author

Listed:
  • Khordehgah, Navid
  • Guichet, Valentin
  • Lester, Stephen P.
  • Jouhara, Hussam

Abstract

The work presented in the paper provides a detailed TRaNsient System Simulation (TRNSYS) model that simulates the performance of a solar photovoltaic – thermal (PV/T) collector and examines its potential contribution for household heating applications in the UK. Based on this, a system is modelled to simulate the hot water demand of a house through connecting the solar – thermal panel with a thermal storage tank, a pump and a controller. The results obtained from the simulation indicated by how much the solar panel is able to convert solar energy into electrical power and heat over different seasons of the year and provide the hot water needs of the household. The model was validated based on the experimental configurations of a hybrid heat pipe based solar PV/T module and through applying cooling cycles, the thermal and electrical outputs and efficiencies of the system were indicated. Through this, it is investigated that the temperature of the solar panel can be reduced on average by almost 25%, which subsequently, will result in an increase of the electrical power output by nearly 15%. The simulation results also assisted in investigating and analysing aspects such as the effectiveness and efficiency of the panel over different times of the year and helped to optimise the performance of the system. For instance, it is simulated that the system can provide hot water for the household throughout all seasons of the year and under different solar radiation conditions. However, it is discovered that in order for the system to meet the required output demand, input from an auxiliary power unit may always be necessary.

Suggested Citation

  • Khordehgah, Navid & Guichet, Valentin & Lester, Stephen P. & Jouhara, Hussam, 2019. "Computational study and experimental validation of a solar photovoltaics and thermal technology," Renewable Energy, Elsevier, vol. 143(C), pages 1348-1356.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1348-1356
    DOI: 10.1016/j.renene.2019.05.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    2. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    3. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    4. Quesada, B. & Sánchez, C. & Cañada, J. & Royo, R. & Payá, J., 2011. "Experimental results and simulation with TRNSYS of a 7.2Â kWp grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 88(5), pages 1772-1783, May.
    5. Shenyi Wu & Chenguang Xiong, 2014. "Passive cooling technology for photovoltaic panels for domestic houses," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 118-126.
    6. Sun, L.L. & Li, M. & Yuan, Y.P. & Cao, X.L. & Lei, B. & Yu, N.Y., 2016. "Effect of tilt angle and connection mode of PVT modules on the energy efficiency of a hot water system for high-rise residential buildings," Renewable Energy, Elsevier, vol. 93(C), pages 291-301.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2022. "Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG," Energy, Elsevier, vol. 249(C).
    2. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    3. Żabnieńska-Góra, Alina & Khordehgah, Navid & Jouhara, Hussam, 2021. "Annual performance analysis of the PV/T system for the heat demand of a low-energy single-family building," Renewable Energy, Elsevier, vol. 163(C), pages 1923-1931.
    4. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    5. Brough, Daniel & Mezquita, Ana & Ferrer, Salvador & Segarra, Carmen & Chauhan, Amisha & Almahmoud, Sulaiman & Khordehgah, Navid & Ahmad, Lujean & Middleton, David & Sewell, H. Isaac & Jouhara, Hussam, 2020. "An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger," Energy, Elsevier, vol. 208(C).
    6. Sohani, Ali & Sayyaadi, Hoseyn, 2020. "Providing an accurate method for obtaining the efficiency of a photovoltaic solar module," Renewable Energy, Elsevier, vol. 156(C), pages 395-406.
    7. Wei-Hsiang Chiang & Han-Sheng Wu & Jong-Shinn Wu & Shiow-Jyu Lin, 2022. "A Method for Estimating On-Field Photovoltaics System Efficiency Using Thermal Imaging and Weather Instrument Data and an Unmanned Aerial Vehicle," Energies, MDPI, vol. 15(16), pages 1-12, August.
    8. Qiu, Guodong & Yu, Shipeng & Cai, Weihua, 2021. "A novel heating strategy and its optimization of a solar heating system for a commercial building in term of economy," Energy, Elsevier, vol. 221(C).
    9. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Khordehgah, N. & Żabnieńska-Góra, A. & Jouhara, H., 2021. "Analytical modelling of a photovoltaics-thermal technology combined with thermal and electrical storage systems," Renewable Energy, Elsevier, vol. 165(P1), pages 350-358.
    12. Fahad Maoulida & Rabah Djedjig & Mohamed Aboudou Kassim & Mohammed El Ganaoui, 2022. "Numerical Study for the Evaluation of the Effectiveness and Benefits of Using Photovoltaic-Thermal (PV/T) System for Hot Water and Electricity Production under a Tropical African Climate: Case of Como," Energies, MDPI, vol. 16(1), pages 1-16, December.
    13. abbas, Sajid & Yuan, Yanping & Hassan, Atazaz & Zhou, Jinzhi & Zeng, Chao & Yu, Min & Emmanuel, Bisengimana, 2022. "Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator," Energy, Elsevier, vol. 254(PB).
    14. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Ebrahimnia-Bajestan, Ehsan & Davidson, John & Bailie, David, 2020. "Performance assessment of a hybrid photovoltaic-thermal and heat pump system for solar heating and electricity," Renewable Energy, Elsevier, vol. 148(C), pages 558-572.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    2. Abdalqader Ahmad & Helena Navarro & Saikat Ghosh & Yulong Ding & Jatindra Nath Roy, 2021. "Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems," Energies, MDPI, vol. 14(14), pages 1-18, July.
    3. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    4. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    5. Essa, Mohamed A. & Talaat, M. & Amer, Abdalla & Farahat, M.A., 2021. "Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material," Energy, Elsevier, vol. 225(C).
    6. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    7. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    8. Saad Odeh & Junxi Feng, 2022. "Long Term Performance Assessment of a Residential PV/Thermal Hybrid System," Energies, MDPI, vol. 16(1), pages 1-14, December.
    9. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    10. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    11. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    12. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    13. Hissouf, Mohamed & Feddaoui, M’barek & Charef, Adil & Aftiss, Reda & Zabour, Khadija, 2024. "Assessment of the energy production of a hybrid PV/T collector based on different fluids for Agadir climate," Renewable Energy, Elsevier, vol. 227(C).
    14. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    15. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    16. Guarracino, Ilaria & Freeman, James & Ramos, Alba & Kalogirou, Soteris A. & Ekins-Daukes, Nicholas J. & Markides, Christos N., 2019. "Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions," Applied Energy, Elsevier, vol. 240(C), pages 1014-1030.
    17. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    18. Rolka, Paulina & Przybylinski, Tomasz & Kwidzinski, Roman & Lackowski, Marcin, 2021. "The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems," Renewable Energy, Elsevier, vol. 172(C), pages 541-550.
    19. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    20. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1348-1356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.