IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v55y2018icp31-40.html
   My bibliography  Save this article

Environmental and economic analysis of solar systems in Madeira, Portugal

Author

Listed:
  • Pestana, Daniel Garigali
  • Rodrigues, Sandy
  • Morgado-Dias, F.

Abstract

The solar market started growing in Madeira from 2008 to profit from great solar exposition. Initially, there was a strong investment, but the removal of the Feed-in Tariffs, and self-consumption regulations caused stagnation in new solar systems. This policy change is relevant to check the current lack of investments and an analysis of the environmental and economic effects over a decade is necessary to help defining the solar policy for the next decades. Results show savings of 100 thousand tons of CO2 and 38 million euros supporting the need of policy reversal to address a change in the net-metering regime.

Suggested Citation

  • Pestana, Daniel Garigali & Rodrigues, Sandy & Morgado-Dias, F., 2018. "Environmental and economic analysis of solar systems in Madeira, Portugal," Utilities Policy, Elsevier, vol. 55(C), pages 31-40.
  • Handle: RePEc:eee:juipol:v:55:y:2018:i:c:p:31-40
    DOI: 10.1016/j.jup.2018.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178718300742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2018.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graça Gomes, João & Medeiros Pinto, José & Xu, Huijin & Zhao, Changying & Hashim, Haslenda, 2020. "Modeling and planning of the electricity energy system with a high share of renewable supply for Portugal," Energy, Elsevier, vol. 211(C).
    2. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.
    3. Jaroslav Košičan & Miguel Ángel Pardo & Silvia Vilčeková, 2020. "A Multicriteria Methodology to Select the Best Installation of Solar Thermal Power in a Family House," Energies, MDPI, vol. 13(5), pages 1-17, February.
    4. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.
    5. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    6. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Piotr Olczak & Agnieszka Żelazna & Dominika Matuszewska & Małgorzata Olek, 2021. "The “My Electricity” Program as One of the Ways to Reduce CO 2 Emissions in Poland," Energies, MDPI, vol. 14(22), pages 1-17, November.
    8. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Piotr Olczak & Dominika Matuszewska & Jadwiga Zabagło, 2020. "The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study," Energies, MDPI, vol. 13(7), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:55:y:2018:i:c:p:31-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.