Author
Listed:
- Maseer, Muayad M.
- Ismail, Firas Basim
- Kazem, Hussein A.
- Hachim, Dhafer Manea
- Al-Gburi, Kumail Abdulkareem Hadi
- Chaichan, Miqdam T.
Abstract
This experimental measurement examines Photovoltaic/Thermal (PVT) systems with semicircle absorber tubes, focusing on the impact of nanoparticle-enhanced phase change material (NPCM). Four PVT systems are analyzed, all using a standard PV module: a. PVT1: cooled by water; b. PVT2: cooled by water and NPCM; c. PVT3: cooled by nanofluid; d. PVT4: cooled by nanofluid and NPCM.The research evaluates their thermal, electrical, and overall performance and efficiencies at volumetric flow rates of 1–5 LPM under harsh outdoor conditions. The results reveal that the PVT4 system demonstrates the highest efficiency. At a volumetric flow rate of 5 LPM and a surrounding temperature of 47.94 °C, it achieves electrical, thermal, and total efficiencies of 12.70 %, 78.99 %, and 91.83 %, respectively. By enhancing the heat transfer between nanofluids and NPCMs, system cooling is enhanced and thermal efficiency is greatly increased. Additionally, the use of such systems notably reduced the surface temperature, exhibiting a decrease of about 35.09 % compared to the standard PV module while the use of nanofluid cooling only without NPCM caused a reduction of 29.93 % compared to the PV module. Importantly, the PVT4 setup outperforms the unenhanced PV module (PVT3) in overall efficiency by 14.04 %. In this study, PV modules are cooled by a heat exchanger made up of semicircular tubes attached to their backs. The study confirms that a PCM enhanced with nanoparticles performs well in the PVT system when semicircular absorption tubes are used. A significant reduction in surface temperatures is achieved with the use of this heat exchanger, resulting in remarkable thermal efficiency. As a result of this cooling effect, the PV module is more efficient than a traditional solar module in terms of electrical output. This type of system is likely to influence the development of more convenient and efficient solar energy systems. It is possible to use the heat absorbed by PV modules in other ways as well.
Suggested Citation
Maseer, Muayad M. & Ismail, Firas Basim & Kazem, Hussein A. & Hachim, Dhafer Manea & Al-Gburi, Kumail Abdulkareem Hadi & Chaichan, Miqdam T., 2024.
"Performance enhancement of photovoltaic/thermal collector semicircle absorber tubes using nanofluid and NPCM,"
Renewable Energy, Elsevier, vol. 233(C).
Handle:
RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012205
DOI: 10.1016/j.renene.2024.121152
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012205. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.