IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121010182.html
   My bibliography  Save this article

Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives

Author

Listed:
  • Wang, Y.
  • Wang, J.
  • He, W.

Abstract

Half of the global final energy consumption is related to heat, which accounts for 40% of global energy-related carbon emissions. Particularly in the UK, nearly 24 million end-users rely on gas boilers to provide heat, leading to 37% of the country’s carbon emissions. Quick and successful heat decarbonisation is critical if ambitious climate goals need to be met by the mid-21st century. Heat pumps have been recognised as a key solution to reduce carbon emissions. This would instead draw carbon-reduced electricity from the electrical grid to produce heat more efficiently. Reciprocatively, the potential flexibility offered by the growing adoption of heat pumps on a (gigawatt) scale could also potentially support the deep decarbonisation of power and reduce the costs involved in the power system balancing and upgrades. By reviewing the technical development and barriers to creating high-efficiency and high-flexibility heat pumps, this study discusses how heat pumps could support the decarbonisation of heat and power with a focus on the UK system and market, which is also useful to countries in which heating is currently relying on fossil fuels. The major hurdle that mitigates the use of heat pumps – the high cost involved – and the methods to improve the economics of the technology are also discussed. If these techno-economic challenges can be overcome, electrification of heat using heat pumps could provide a route towards decarbonising heat and power and give the two communities and industries a collaborative way of tackling climate change at the root.

Suggested Citation

  • Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010182
    DOI: 10.1016/j.rser.2021.111747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean‐Philippe Bouchaud & Philipp Krüger & Augustin Landier & David Thesmar, 2019. "Sticky Expectations and the Profitability Anomaly," Journal of Finance, American Finance Association, vol. 74(2), pages 639-674, April.
    2. Cherrelle Eid & Paul Codani & Yurong Chen & Yannick Perez & Rudi Hakvoort, 2015. "Aggregation of demand side flexibility in a smart grid: A review for European market design," Post-Print hal-01230914, HAL.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    4. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    5. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Kircher, Kevin J. & Zhang, K. Max, 2021. "Heat purchase agreements could lower barriers to heat pump adoption," Applied Energy, Elsevier, vol. 286(C).
    7. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    8. Barnes, Jake & Bhagavathy, Sivapriya Mothilal, 2020. "The economics of heat pumps and the (un)intended consequences of government policy," Energy Policy, Elsevier, vol. 138(C).
    9. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    10. Brian Bell & Pawel Bukowski & Stephen Machin, 2019. "Workers' falling share of firms' profits," CentrePiece - The magazine for economic performance 557, Centre for Economic Performance, LSE.
    11. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    12. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
    13. Zhang, Shengjun & Wang, Huaixin & Guo, Tao, 2010. "Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures," Applied Energy, Elsevier, vol. 87(5), pages 1554-1561, May.
    14. Merten, Michael & Olk, Christopher & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Bidding strategy for battery storage systems in the secondary control reserve market," Applied Energy, Elsevier, vol. 268(C).
    15. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    16. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    17. Weeratunge, Hansani & Narsilio, Guillermo & de Hoog, Julian & Dunstall, Simon & Halgamuge, Saman, 2018. "Model predictive control for a solar assisted ground source heat pump system," Energy, Elsevier, vol. 152(C), pages 974-984.
    18. Schiffmann, J. & Favrat, D., 2010. "Design, experimental investigation and multi-objective optimization of a small-scale radial compressor for heat pump applications," Energy, Elsevier, vol. 35(1), pages 436-450.
    19. Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
    20. Falko Ueckerdt & Christian Bauer & Alois Dirnaichner & Jordan Everall & Romain Sacchi & Gunnar Luderer, 2021. "Potential and risks of hydrogen-based e-fuels in climate change mitigation," Nature Climate Change, Nature, vol. 11(5), pages 384-393, May.
    21. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    22. Zhu, K. & Victoria, M. & Brown, T. & Andresen, G.B. & Greiner, M., 2019. "Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe," Applied Energy, Elsevier, vol. 236(C), pages 622-634.
    23. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    24. Aira, Roberto & Fernández-Seara, José & Diz, Rubén & Pardiñas, Ángel Á., 2017. "Experimental analysis of a ground source heat pump in a residential installation after two years in operation," Renewable Energy, Elsevier, vol. 114(PB), pages 1214-1223.
    25. ., 2019. "A taxonomy of war profiteers," Chapters, in: The Economics of War, chapter 7, pages 132-159, Edward Elgar Publishing.
    26. Xingchi Shen & Pengfei Liu & Yueming (Lucy) Qiu & Anand Patwardhan & Parth Vaishnav, 2021. "Estimation of change in house sales prices in the United States after heat pump adoption," Nature Energy, Nature, vol. 6(1), pages 30-37, January.
    27. Ali Kahraman & Alaeddin Çelebi, 2009. "Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source," Energies, MDPI, vol. 2(3), pages 1-17, August.
    28. Rokas Valancius & Rao Martand Singh & Andrius Jurelionis & Juozas Vaiciunas, 2019. "A Review of Heat Pump Systems and Applications in Cold Climates: Evidence from Lithuania," Energies, MDPI, vol. 12(22), pages 1-18, November.
    29. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    30. Muhssin, Mazin T. & Cipcigan, Liana M. & Sami, Saif Sabah & Obaid, Zeyad Assi, 2018. "Potential of demand side response aggregation for the stabilization of the grids frequency," Applied Energy, Elsevier, vol. 220(C), pages 643-656.
    31. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    32. Demierre, J. & Henchoz, S. & Favrat, D., 2012. "Prototype of a thermally driven heat pump based on integrated Organic Rankine Cycles (ORC)," Energy, Elsevier, vol. 41(1), pages 10-17.
    33. Jie Cai, 2021. "Optimal Building Thermal Load Scheduling for Simultaneous Participation in Energy and Frequency Regulation Markets," Energies, MDPI, vol. 14(6), pages 1-18, March.
    34. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
    35. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    36. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    37. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    38. Lu, Qi & Narsilio, Guillermo A. & Aditya, Gregorius Riyan & Johnston, Ian W., 2017. "Economic analysis of vertical ground source heat pump systems in Melbourne," Energy, Elsevier, vol. 125(C), pages 107-117.
    39. Hao, He & Sanandaji, Borhan M. & Poolla, Kameshwar & Vincent, Tyrone L., 2015. "Potentials and economics of residential thermal loads providing regulation reserve," Energy Policy, Elsevier, vol. 79(C), pages 115-126.
    40. Johnson, Eric P., 2011. "Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources," Energy Policy, Elsevier, vol. 39(3), pages 1369-1381, March.
    41. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.
    42. ., 2019. "Bankers as war profiteers," Chapters, in: The Economics of War, chapter 8, pages 160-183, Edward Elgar Publishing.
    43. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    44. Pudjianto, Danny & Djapic, Predrag & Aunedi, Marko & Gan, Chin Kim & Strbac, Goran & Huang, Sikai & Infield, David, 2013. "Smart control for minimizing distribution network reinforcement cost due to electrification," Energy Policy, Elsevier, vol. 52(C), pages 76-84.
    45. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    46. Fischer, David & Wolf, Tobias & Wapler, Jeannette & Hollinger, Raphael & Madani, Hatef, 2017. "Model-based flexibility assessment of a residential heat pump pool," Energy, Elsevier, vol. 118(C), pages 853-864.
    47. Renaldi, R. & Kiprakis, A. & Friedrich, D., 2017. "An optimisation framework for thermal energy storage integration in a residential heat pump heating system," Applied Energy, Elsevier, vol. 186(P3), pages 520-529.
    48. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    49. Wilson, I.A. Grant & Rennie, Anthony J.R. & Ding, Yulong & Eames, Philip C. & Hall, Peter J. & Kelly, Nicolas J., 2013. "Historical daily gas and electrical energy flows through Great Britain's transmission networks and the decarbonisation of domestic heat," Energy Policy, Elsevier, vol. 61(C), pages 301-305.
    50. Baeten, Brecht & Rogiers, Frederik & Helsen, Lieve, 2017. "Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response," Applied Energy, Elsevier, vol. 195(C), pages 184-195.
    51. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    52. Narula, Kapil & Chambers, Jonathan & Streicher, Kai N. & Patel, Martin K., 2019. "Strategies for decarbonising the Swiss heating system," Energy, Elsevier, vol. 169(C), pages 1119-1131.
    53. Söder, Lennart & Lund, Peter D. & Koduvere, Hardi & Bolkesjø, Torjus Folsland & Rossebø, Geir Høyvik & Rosenlund-Soysal, Emilie & Skytte, Klaus & Katz, Jonas & Blumberga, Dagnija, 2018. "A review of demand side flexibility potential in Northern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 654-664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehigan, L. & Ó Gallachóir, Brian & Deane, Paul, 2022. "Batteries and interconnection: Competing or complementary roles in the decarbonisation of the European power system?," Renewable Energy, Elsevier, vol. 196(C), pages 1229-1240.
    2. Morales Sandoval, Daniel A. & Saikia, Pranaynil & De la Cruz-Loredo, Ivan & Zhou, Yue & Ugalde-Loo, Carlos E. & Bastida, Héctor & Abeysekera, Muditha, 2023. "A framework for the assessment of optimal and cost-effective energy decarbonisation pathways of a UK-based healthcare facility11The short version of the paper was presented at ICAE2022, Bochum, German," Applied Energy, Elsevier, vol. 352(C).
    3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    4. Emanuele Guerrazzi & Dimitri Thomopulos & Davide Fioriti & Ivan Mariuzzo & Eva Schito & Davide Poli & Marco Raugi, 2023. "Design of Energy Communities and Data-Sharing: Format and Open Data," Energies, MDPI, vol. 16(17), pages 1-26, August.
    5. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    6. Jelena Tihana & Hesham Ali & Jekaterina Apse & Janis Jekabsons & Dmitrijs Ivancovs & Baiba Gaujena & Andrei Dedov, 2023. "Hybrid Heat Pump Performance Evaluation in Different Operation Modes for Single-Family House," Energies, MDPI, vol. 16(20), pages 1-17, October.
    7. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    8. Zaid Al-Atari & Rob Shipman & Mark Gillott, 2024. "Optimisation of Integrated Heat Pump and Thermal Energy Storage Systems in Active Buildings for Community Heat Decarbonisation," Energies, MDPI, vol. 17(21), pages 1-18, October.
    9. Lyden, Andrew & Alene, Samuel & Connor, Peter & Renaldi, Renaldi & Watson, Stephen, 2024. "Impact of locational pricing on the roll out of heat pumps in the UK," Energy Policy, Elsevier, vol. 187(C).
    10. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    11. Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Markides, Christos N. & Strbac, Goran, 2023. "System-driven design and integration of low-carbon domestic heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    2. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    3. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    4. Paul Christodoulides & Christakis Christou & Georgios A. Florides, 2024. "Ground Source Heat Pumps in Buildings Revisited and Prospects," Energies, MDPI, vol. 17(13), pages 1-36, July.
    5. Rinaldi, Arthur & Yilmaz, Selin & Patel, Martin K. & Parra, David, 2022. "What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    7. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    8. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    9. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    10. Brudermueller, Tobias & Kreft, Markus & Fleisch, Elgar & Staake, Thorsten, 2023. "Large-scale monitoring of residential heat pump cycling using smart meter data," Applied Energy, Elsevier, vol. 350(C).
    11. Terreros, O. & Spreitzhofer, J. & Basciotti, D. & Schmidt, R.R. & Esterl, T. & Pober, M. & Kerschbaumer, M. & Ziegler, M., 2020. "Electricity market options for heat pumps in rural district heating networks in Austria," Energy, Elsevier, vol. 196(C).
    12. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    13. Zhu, K. & Victoria, M. & Brown, T. & Andresen, G.B. & Greiner, M., 2019. "Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe," Applied Energy, Elsevier, vol. 236(C), pages 622-634.
    14. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Frischmuth, Felix & Härtel, Philipp, 2022. "Hydrogen sourcing strategies and cross-sectoral flexibility trade-offs in net-neutral energy scenarios for Europe," Energy, Elsevier, vol. 238(PB).
    17. Jan Stede & Karin Arnold & Christa Dufter & Georg Holtz & Serafin von Roon & Jörn C. Richstein, 2020. "The Role of Aggregators in Facilitating Industrial Demand Response: Evidence from Germany," Discussion Papers of DIW Berlin 1840, DIW Berlin, German Institute for Economic Research.
    18. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    19. Marszal-Pomianowska, Anna & Widén, Joakim & Le Dréau, Jérôme & Heiselberg, Per & Bak-Jensen, Birgitte & de Cerio Mendaza, Iker Diaz, 2020. "Operation of power distribution networks with new and flexible loads: A case of existing residential low voltage network," Energy, Elsevier, vol. 202(C).
    20. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.