IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5310-d1506478.html
   My bibliography  Save this article

Optimisation of Integrated Heat Pump and Thermal Energy Storage Systems in Active Buildings for Community Heat Decarbonisation

Author

Listed:
  • Zaid Al-Atari

    (Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

  • Rob Shipman

    (Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

  • Mark Gillott

    (Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

The electrification of residential heating systems, crucial for achieving net-zero emissions, poses significant challenges for low-voltage distribution networks. This study develops a simulation model to explore the integration of heat pumps within active building systems for community heating decarbonisation. The model optimises heat pump operations in conjunction with thermal energy storage units to reduce peak demand on low-voltage networks by using real-time measured electricity demand data and modelled heat demand data for 76 houses. The study employs an algorithm that adjusts thermal storage charging and discharging cycles to align with off-peak periods. Three scenarios were simulated: a baseline with unoptimised heat pumps, a fixed threshold model, and an active building model with daily optimised thresholds. The results demonstrate that the active building model achieves a 21% reduction in peak demand on the low-voltage substation compared to the baseline scenario; it also reduces the total electrical energy consumption by 12% and carbon emissions by 17%. The fixed threshold scenario shows a 16% improvement in peak demand reduction, but it also shows an increase in energy consumption and emissions. These findings highlight the potential of active buildings to enhance the efficiency and sustainability of residential energy systems, marking a significant step toward decarbonising residential heating while maintaining grid stability.

Suggested Citation

  • Zaid Al-Atari & Rob Shipman & Mark Gillott, 2024. "Optimisation of Integrated Heat Pump and Thermal Energy Storage Systems in Active Buildings for Community Heat Decarbonisation," Energies, MDPI, vol. 17(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5310-:d:1506478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    2. Morales Sandoval, Daniel A. & Saikia, Pranaynil & De la Cruz-Loredo, Ivan & Zhou, Yue & Ugalde-Loo, Carlos E. & Bastida, Héctor & Abeysekera, Muditha, 2023. "A framework for the assessment of optimal and cost-effective energy decarbonisation pathways of a UK-based healthcare facility11The short version of the paper was presented at ICAE2022, Bochum, German," Applied Energy, Elsevier, vol. 352(C).
    3. Jelena Tihana & Hesham Ali & Jekaterina Apse & Janis Jekabsons & Dmitrijs Ivancovs & Baiba Gaujena & Andrei Dedov, 2023. "Hybrid Heat Pump Performance Evaluation in Different Operation Modes for Single-Family House," Energies, MDPI, vol. 16(20), pages 1-17, October.
    4. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    5. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    6. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    7. Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Markides, Christos N. & Strbac, Goran, 2023. "System-driven design and integration of low-carbon domestic heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Lyden, Andrew & Alene, Samuel & Connor, Peter & Renaldi, Renaldi & Watson, Stephen, 2024. "Impact of locational pricing on the roll out of heat pumps in the UK," Energy Policy, Elsevier, vol. 187(C).
    9. Mehigan, L. & Ó Gallachóir, Brian & Deane, Paul, 2022. "Batteries and interconnection: Competing or complementary roles in the decarbonisation of the European power system?," Renewable Energy, Elsevier, vol. 196(C), pages 1229-1240.
    10. Emanuele Guerrazzi & Dimitri Thomopulos & Davide Fioriti & Ivan Mariuzzo & Eva Schito & Davide Poli & Marco Raugi, 2023. "Design of Energy Communities and Data-Sharing: Format and Open Data," Energies, MDPI, vol. 16(17), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5310-:d:1506478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.