IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp1033-1053.html
   My bibliography  Save this article

Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands

Author

Listed:
  • Fraga, Carolina
  • Hollmuller, Pierre
  • Schneider, Stefan
  • Lachal, Bernard

Abstract

This article covers a comparative analysis of the potentials and constraints of different heat sources (air, geothermal boreholes, lake, river, groundwater and solar thermal) exploited by HP systems, implemented in various types of multifamily buildings (MFB) – new, retrofitted and non-retrofitted – which correspond to real case studies situated in Geneva. After characterizing the various heat sources and building demands, as well as presenting the numerical model and adopted sizing values, we study the intrinsic potential of the various HP heat sources and show that the HP seasonal performance factor (SPF) is directly correlated to the heat source temperature. In a further step we consider complementary PV production for the HP system, taking into account the available roof area and daily profile match. For buildings with a combined space heating and domestic hot water heat demand up to 80 kWh/m2, which correspond to current best case buildings (10% of the existing MFB stock in Geneva), combined HP & PV systems should lead to an annual purchased electricity inferior to 15 kWh/m2 (with a factor 2 between best and worst heat sources), with an associated daily peak load up to 150 Wh/m2/day. For a demand below 130 kWh/m2 (which is the case of 75% of the existing MFB stock of the Canton), the various combinations of HP & PV systems mainly result in a purchased electricity below 45 kWh/m2. The daily peak load reaches up to 500 Wh/m2/day, or eventually higher in the case of high-rise buildings. Aside from the final purchased electricity, the annual electricity injected into the grid is in the order of 15–20 kWh/m2 for low-rise buildings, and half that much for high-rise buildings (except for solar HP systems, for which the reduced available roof area for PV leads to significantly lower values). Lastly, SPF alone is not a sufficient indicator for the characterization of the HP system performance, since it doesn’t reflect the absolute value of the electricity demand, which primarily depends on the building heat demand. Furthermore, both SPF and annual electricity demand are limited to annual balance considerations. As a complement, an indication of the peak electricity load gives valuable indications of the potential stress on the grid.

Suggested Citation

  • Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:1033-1053
    DOI: 10.1016/j.apenergy.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918306974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
    2. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2016. "Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions," Applied Energy, Elsevier, vol. 167(C), pages 255-269.
    3. Luickx, Patrick J. & Helsen, Lieve M. & D'haeseleer, William D., 2008. "Influence of massive heat-pump introduction on the electricity-generation mix and the GHG effect: Comparison between Belgium, France, Germany and The Netherlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2140-2158, October.
    4. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    5. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    6. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    7. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    8. Marini, Dashamir, 2013. "Optimization of HVAC systems for distributed generation as a function of different types of heat sources and climatic conditions," Applied Energy, Elsevier, vol. 102(C), pages 813-826.
    9. Poppi, Stefano & Bales, Chris & Haller, Michel Y. & Heinz, Andreas, 2016. "Influence of boundary conditions and component size on electricity demand in solar thermal and heat pump combisystems," Applied Energy, Elsevier, vol. 162(C), pages 1062-1073.
    10. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.
    11. Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2014. "Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks," Applied Energy, Elsevier, vol. 127(C), pages 249-266.
    12. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan, Lianying & Martin, Andrew & Chiu, Justin NingWei, 2024. "Techno-economic analysis of latent heat thermal energy storage integrated heat pump for indoor heating," Energy, Elsevier, vol. 298(C).
    2. Macedon Moldovan & Bogdan-Gabriel Burduhos & Ion Visa, 2021. "Yearly Electrical Energy Assessment of a Photovoltaic Platform/Geothermal Heat Pump Prosumer," Energies, MDPI, vol. 14(13), pages 1-18, June.
    3. Hosseinnia, Seyed Mojtaba & Sorin, Mikhail, 2022. "Energy targeting approach for optimum solar assisted ground source heat pump integration in buildings," Energy, Elsevier, vol. 248(C).
    4. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Lämmle, Manuel & Bongs, Constanze & Wapler, Jeannette & Günther, Danny & Hess, Stefan & Kropp, Michael & Herkel, Sebastian, 2022. "Performance of air and ground source heat pumps retrofitted to radiator heating systems and measures to reduce space heating temperatures in existing buildings," Energy, Elsevier, vol. 242(C).
    6. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Angeliki Kitsopoulou & Antonis Zacharis & Nikolaos Ziozas & Evangelos Bellos & Petros Iliadis & Ioannis Lampropoulos & Eleni Chatzigeorgiou & Komninos Angelakoglou & Nikolaos Nikolopoulos, 2023. "Dynamic Energy Analysis of Different Heat Pump Heating Systems Exploiting Renewable Energy Sources," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
    8. Omar Montero & Pauline Brischoux & Simon Callegari & Carolina Fraga & Matthias Rüetschi & Edouard Vionnet & Nicole Calame & Fabrice Rognon & Martin Patel & Pierre Hollmuller, 2022. "Large Air-to-Water Heat Pumps for Fuel-Boiler Substitution in Non-Retrofitted Multi-Family Buildings—Energy Performance, CO 2 Savings, and Lessons Learned in Actual Conditions of Use," Energies, MDPI, vol. 15(14), pages 1-29, July.
    9. Barnaś, Krzysztof & Jeleński, Tomasz & Nowak-Ocłoń, Marzena & Racoń-Leja, Kinga & Radziszewska-Zielina, Elżbieta & Szewczyk, Bartłomiej & Śladowski, Grzegorz & Toś, Cezary & Varbanov, Petar Sabev, 2023. "Algorithm for the comprehensive thermal retrofit of housing stock aided by renewable energy supply: A sustainable case for Krakow," Energy, Elsevier, vol. 263(PD).
    10. Berger, Matthias & Schroeteler, Benjamin & Sperle, Helene & Püntener, Patrizia & Felder, Tom & Worlitschek, Jörg, 2022. "Assessment of residential scale renewable heating solutions with thermal energy storages," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    2. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    3. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    4. Macedon Moldovan & Bogdan-Gabriel Burduhos & Ion Visa, 2021. "Yearly Electrical Energy Assessment of a Photovoltaic Platform/Geothermal Heat Pump Prosumer," Energies, MDPI, vol. 14(13), pages 1-18, June.
    5. Krzysztof Tomczuk & Paweł Obstawski, 2024. "Analysis of the Cooperation of a Compressor Heat Pump with a PV System," Sustainability, MDPI, vol. 16(9), pages 1-29, April.
    6. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    7. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    8. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    9. Liang, Youcai & Al-Tameemi, Mohammed & Yu, Zhibin, 2018. "Investigation of a gas-fuelled water heater based on combined power and heat pump cycles," Applied Energy, Elsevier, vol. 212(C), pages 1476-1488.
    10. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    11. Paolo Conti & Carlo Bartoli & Alessandro Franco & Daniele Testi, 2020. "Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-In-The-Loop” System," Energies, MDPI, vol. 13(17), pages 1-18, September.
    12. Hassam ur Rehman & Janne Hirvonen & Juha Jokisalo & Risto Kosonen & Kai Sirén, 2020. "EU Emission Targets of 2050: Costs and CO 2 Emissions Comparison of Three Different Solar and Heat Pump-Based Community-Level District Heating Systems in Nordic Conditions," Energies, MDPI, vol. 13(16), pages 1-31, August.
    13. Meunier, Simon & Protopapadaki, Christina & Baetens, Ruben & Saelens, Dirk, 2021. "Impact of residential low-carbon technologies on low-voltage grid reinforcements," Applied Energy, Elsevier, vol. 297(C).
    14. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    15. McGarry, Connor & Dixon, James & Flower, Jack & Bukhsh, Waqquas & Brand, Christian & Bell, Keith & Galloway, Stuart, 2024. "Electrified heat and transport: Energy demand futures, their impacts on power networks and what it means for system flexibility," Applied Energy, Elsevier, vol. 360(C).
    16. Alessandro Franco & Carlo Bartoli & Paolo Conti & Daniele Testi, 2021. "Optimal Operation of Low-Capacity Heat Pump Systems for Residential Buildings through Thermal Energy Storage," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    17. Edmunds, Calum & Galloway, Stuart & Dixon, James & Bukhsh, Waqquas & Elders, Ian, 2021. "Hosting capacity assessment of heat pumps and optimised electric vehicle charging on low voltage networks," Applied Energy, Elsevier, vol. 298(C).
    18. Bernd Thormann & Thomas Kienberger, 2022. "Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Appl," Energies, MDPI, vol. 15(4), pages 1-26, February.
    19. Sebastian Kuboth & Theresa Weith & Florian Heberle & Matthias Welzl & Dieter Brüggemann, 2020. "Experimental Long-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings with Photovoltaic Power Generation," Energies, MDPI, vol. 13(22), pages 1-17, November.
    20. Wang, Zhikun & Crawley, Jenny & Li, Francis G.N. & Lowe, Robert, 2020. "Sizing of district heating systems based on smart meter data: Quantifying the aggregated domestic energy demand and demand diversity in the UK," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:1033-1053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.