IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017270.html
   My bibliography  Save this article

Research on gas-liquid interface parameters related to thermal performance of frost-free evaporator of air source heat pump

Author

Listed:
  • Zhou, Dan
  • Zhang, Yi
  • Wu, Yuting
  • Wang, Yunfei
  • Zhang, Guanmin

Abstract

Direct spray frost-free air source heat pumps (FFASHPs) base on liquid desiccant solutions are a more promising renewable energy technology for developing net-zero emission buildings. In order to improve the thermal performance of the frost-free evaporator, a numerical mode was established based on the penetration theory and the two-film theory to reveal the interfacial heat and mass transfer mechanism of LiCl solution falling film absorption on the air side of the frost-free evaporator. The distribution characteristics of temperature, water vapor concentration, effective diffusion coefficient, morphology, velocity and pressure at the interface under different air Reynolds numbers and temperatures were analyzed. The results show that the distribution uniformity of interface parameters has a greater effect on heat transfer performance than its average value. The critical Reynolds number is 391.0 under the present study, and the distribution uniformity of interface parameters and the intensity of interface fluctuation are improved, and the thermal performance reaches the peak. The COP of FFASHP system can be improved effectively when the frost-free evaporator is operated under the critical condition matching its parameters. The purpose of the study is to provide theoretical support for the performance improvement and efficient operation of frost-free evaporators.

Suggested Citation

  • Zhou, Dan & Zhang, Yi & Wu, Yuting & Wang, Yunfei & Zhang, Guanmin, 2024. "Research on gas-liquid interface parameters related to thermal performance of frost-free evaporator of air source heat pump," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017270
    DOI: 10.1016/j.renene.2024.121659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minglu, Qu & Rao, Zhang & Jianbo, Chen & Yuanda, Cheng & Xudong, Zhao & Tongyao, Zhang & Zhao, Li, 2020. "Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps," Renewable Energy, Elsevier, vol. 147(P1), pages 35-42.
    2. Hou, Feng & He, Ting & Lu, Yan & Sun, Hongchuang & Li, Yawei & Yuan, Pei, 2024. "Experimental and simulation study on the performance of a solar assisted multi-source heat pump drying system in Zhengzhou area," Renewable Energy, Elsevier, vol. 229(C).
    3. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    4. Boahen, Samuel & Anka, Selorm Kwaku & Ohm, Tae In & Cho, Yong & Choi, Jong Woong & Kim, Han-Young & Choi, Jong Min, 2023. "Capacity control of a cascade multi-purpose heat pump using variable speed compressor," Renewable Energy, Elsevier, vol. 205(C), pages 945-955.
    5. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
    7. Zhiyi, Wang & Xinmin, Wang & Zhiming, Dong, 2008. "Defrost improvement by heat pump refrigerant charge compensating," Applied Energy, Elsevier, vol. 85(11), pages 1050-1059, November.
    8. Pu, Jihong & Shen, Chao & Zhang, Chunxiao & Liu, Xingjiang, 2021. "A semi-experimental method for evaluating frosting performance of air source heat pumps," Renewable Energy, Elsevier, vol. 173(C), pages 913-925.
    9. Wei, Wenzhe & Ni, Long & Li, Shuyi & Wang, Wei & Yao, Yang & Xu, Laifu & Yang, Yahua, 2020. "A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load," Renewable Energy, Elsevier, vol. 161(C), pages 184-199.
    10. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    11. Li, Yongcai & Li, Wuyan & Liu, Zongsheng & Lu, Jun & Zeng, Liyue & Yang, Lulu & Xie, Ling, 2017. "Theoretical and numerical study on performance of the air-source heat pump system in Tibet," Renewable Energy, Elsevier, vol. 114(PB), pages 489-501.
    12. Li, Yunhai & Li, Zhaomeng & Fan, Yi & Zeng, Cheng & Cui, Yu & Zhao, Xudong & Li, Jing & Chen, Ying & Chen, Jianyong & Shen, Chao, 2023. "Experimental investigation of a novel two-stage heat recovery heat pump system employing the vapor injection compressor at cold ambience and high water temperature conditions," Renewable Energy, Elsevier, vol. 205(C), pages 678-694.
    13. Pesola, Aki, 2023. "Cost-optimization model to design and operate hybrid heating systems – Case study of district heating system with decentralized heat pumps in Finland," Energy, Elsevier, vol. 281(C).
    14. Luo, Yimo & Yang, Hongxing & Lu, Lin, 2014. "Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 136(C), pages 1018-1025.
    15. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    16. Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
    17. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomas Kropas & Giedrė Streckienė & Juozas Bielskus, 2021. "Experimental Investigation of Frost Formation Influence on an Air Source Heat Pump Evaporator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    2. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    3. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
    4. Li, Jinping & Sun, Xiaohua & Zhu, Junjie & Karkon, Ehsan Gholamian & Novakovic, Vojislav, 2024. "Performance comparison of air source heat pump coupling with solar evacuated tube water heater and that with micro heat pipe PV/T," Energy, Elsevier, vol. 300(C).
    5. Ma, Longxia & Sun, Yongjun & Wang, Fenghao & Wang, Ming & Zhang, Sheng & Wang, Zhihua, 2025. "Advancements in anti-frosting and defrosting techniques for air source heat pumps: A comprehensive review of recent progress," Applied Energy, Elsevier, vol. 377(PA).
    6. Wei, Wenzhe & Ni, Long & Li, Shuyi & Wang, Wei & Yao, Yang & Xu, Laifu & Yang, Yahua, 2020. "A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load," Renewable Energy, Elsevier, vol. 161(C), pages 184-199.
    7. Zhang, Tianhu & Wang, Fuxi & Gao, Yi & Liu, Yuanjun & Guo, Qiang & Zhao, Qingxin, 2023. "Optimization of a solar-air source heat pump system in the high-cold and high-altitude area of China," Energy, Elsevier, vol. 268(C).
    8. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    9. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    11. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    12. Lu, Hao & Lu, Lin & Luo, Yimo & Qi, Ronghui, 2016. "Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification," Energy, Elsevier, vol. 101(C), pages 229-238.
    13. Mehdipour, Ramin & Garvey, Seamus & Baniamerian, Zahra & Cardenas, Bruno, 2024. "Ice source heat pump system for energy supply via gas pipelines – Part1: Performance analysis in residential units," Energy, Elsevier, vol. 309(C).
    14. Luo, Yimo & Chen, Yi & Yang, Hongxing & Wang, Yuanhao, 2017. "Study on an internally-cooled liquid desiccant dehumidifier with CFD model," Applied Energy, Elsevier, vol. 194(C), pages 399-409.
    15. Zaid Al-Atari & Rob Shipman & Mark Gillott, 2024. "Optimisation of Integrated Heat Pump and Thermal Energy Storage Systems in Active Buildings for Community Heat Decarbonisation," Energies, MDPI, vol. 17(21), pages 1-18, October.
    16. Gao, Jinshuang & Li, Sheng & Wu, Fan & Jiang, Long & Zhao, Yazhou & Zhang, Xuejun, 2024. "Study on efficient heating method by solar coupled air source heat pump system with phase change heat storage in severe cold region," Applied Energy, Elsevier, vol. 367(C).
    17. Shih-Cheng Hu & Angus Shiue & Yi-Shiung Chiu & Archy Wang & Jacky Chen, 2016. "Simplified Heat and Mass Transfer Model for Cross-Flow and Countercurrent Flow Packed Bed Tower Dehumidifiers with a Liquid Desiccant System," Sustainability, MDPI, vol. 8(12), pages 1-13, December.
    18. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    19. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    20. Li, Wuyan & Li, Xianting & Gao, Yijun & Shi, Wenxing, 2022. "Thermo-economic evaluation for energy retrofitting building ventilation system based on run-around heat recovery system," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.