Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2021.111478
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
- Albert, Alberto & Berselli, Giovanni & Bruzzone, Luca & Fanghella, Pietro, 2017. "Mechanical design and simulation of an onshore four-bar wave energy converter," Renewable Energy, Elsevier, vol. 114(PB), pages 766-774.
- Mohd Nasir Ayob & Valeria Castellucci & Johan Abrahamsson & Rafael Waters, 2019. "A Remotely Controlled Sea Level Compensation System for Wave Energy Converters," Energies, MDPI, vol. 12(10), pages 1-16, May.
- Vakis, Antonis I. & Anagnostopoulos, John S., 2016. "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter," Renewable Energy, Elsevier, vol. 96(PA), pages 531-547.
- Ned Bowden & Scott Brittain & Anthony G. Evans & John W. Hutchinson & George M. Whitesides, 1998. "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature, Nature, vol. 393(6681), pages 146-149, May.
- Margheritini, L. & Vicinanza, D. & Frigaard, P., 2009. "SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device," Renewable Energy, Elsevier, vol. 34(5), pages 1371-1380.
- Dongsheng Qiao & Rizwan Haider & Jun Yan & Dezhi Ning & Binbin Li, 2020. "Review of Wave Energy Converter and Design of Mooring System," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
- Moretti, Giacomo & Santos Herran, Miguel & Forehand, David & Alves, Marco & Jeffrey, Henry & Vertechy, Rocco & Fontana, Marco, 2020. "Advances in the development of dielectric elastomer generators for wave energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Matthieu Ancellin & Marlène Dong & Philippe Jean & Frédéric Dias, 2020. "Far-Field Maximal Power Absorption of a Bulging Cylindrical Wave Energy Converter," Energies, MDPI, vol. 13(20), pages 1-17, October.
- Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
- Shadman, Milad & Guarniz Avalos, Gustavo Omar & Estefen, Segen F., 2021. "On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching," Renewable Energy, Elsevier, vol. 169(C), pages 157-177.
- Leijon, M. & Danielsson, O. & Eriksson, M. & Thorburn, K. & Bernhoff, H. & Isberg, J. & Sundberg, J. & Ivanova, I. & Sjöstedt, E. & Ågren, O. & Karlsson, K.E. & Wolfbrandt, A., 2006. "An electrical approach to wave energy conversion," Renewable Energy, Elsevier, vol. 31(9), pages 1309-1319.
- Wei, Y. & Barradas-Berglind, J.J. & van Rooij, M. & Prins, W.A. & Jayawardhana, B. & Vakis, A.I., 2017. "Investigating the adaptability of the multi-pump multi-piston power take-off system for a novel wave energy converter," Renewable Energy, Elsevier, vol. 111(C), pages 598-610.
- Bellamy, Norman W. & Bucchi, Andrea & Hearn, Grant E., 2016. "Analysis of the SEA-OWC-Clam wave energy device – Part A: Historical development, hydrodynamic and motion response formulations & solutions," Renewable Energy, Elsevier, vol. 88(C), pages 220-235.
- Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
- Ransley, E.J. & Greaves, D. & Raby, A. & Simmonds, D. & Hann, M., 2017. "Survivability of wave energy converters using CFD," Renewable Energy, Elsevier, vol. 109(C), pages 235-247.
- Kofoed, Jens Peter & Frigaard, Peter & Friis-Madsen, Erik & Sørensen, Hans Chr., 2006. "Prototype testing of the wave energy converter wave dragon," Renewable Energy, Elsevier, vol. 31(2), pages 181-189.
- Bucchi, Andrea & Hearn, Grant E., 2016. "Analysis of the SEA-OWC-Clam wave energy device part B: Structural integrity analysis," Renewable Energy, Elsevier, vol. 99(C), pages 253-269.
- Bucchi, Andrea & Hearn, Grant E., 2013. "Delay or removal of aneurysm formation in the Anaconda wave energy extraction device," Renewable Energy, Elsevier, vol. 55(C), pages 104-119.
- Francesco Ferri & Simon Ambühl & Boris Fischer & Jens Peter Kofoed, 2014. "Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies," Energies, MDPI, vol. 7(4), pages 1-28, April.
- Simon Ambühl & Morten Kramer & John Dalsgaard Sørensen, 2014. "Reliability-Based Structural Optimization of Wave Energy Converters," Energies, MDPI, vol. 7(12), pages 1-23, December.
- Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
- Rico H. Hansen & Morten M. Kramer & Enrique Vidal, 2013. "Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-44, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emiliano Renzi & Simone Michele & Siming Zheng & Siya Jin & Deborah Greaves, 2021. "Niche Applications and Flexible Devices for Wave Energy Conversion: A Review," Energies, MDPI, vol. 14(20), pages 1-25, October.
- Xiang Li & Qing Xiao, 2022. "A Numerical Study on an Oscillating Water Column Wave Energy Converter with Hyper-Elastic Material," Energies, MDPI, vol. 15(22), pages 1-25, November.
- Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
- He, Lipeng & Liu, Renwen & Liu, Xuejin & Zhang, Zheng & Zhang, Limin & Cheng, Guangming, 2023. "A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling," Renewable Energy, Elsevier, vol. 210(C), pages 397-407.
- Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
- Zheng, Siming & Phillips, John Wilfrid & Hann, Martyn & Greaves, Deborah, 2023. "Mathematical modelling of a floating Clam-type wave energy converter," Renewable Energy, Elsevier, vol. 210(C), pages 280-294.
- Wei, Yujia & Wang, Chao & Chen, Wenchuang & Huang, Luofeng, 2024. "Array analysis on a seawall type of deformable wave energy converters," Renewable Energy, Elsevier, vol. 225(C).
- Han, Zhi & Cao, Feifei & Tao, Ji & Shi, Hongda, 2023. "Study on the energy capture spectrum (ECS) of a multi-DoF buoy under random waves," Energy, Elsevier, vol. 279(C).
- Cotten, A. & Kurniawan, A. & Neary, V.S. & Coe, R.G. & Bacelli, G., 2024. "A compressible degree of freedom as a means for improving the performance of heaving wave energy converters," Renewable Energy, Elsevier, vol. 227(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
- Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
- Albert, Alberto & Berselli, Giovanni & Bruzzone, Luca & Fanghella, Pietro, 2017. "Mechanical design and simulation of an onshore four-bar wave energy converter," Renewable Energy, Elsevier, vol. 114(PB), pages 766-774.
- Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
- Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
- Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
- Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
- Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
- Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
- Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.
- Ryan G. Coe & Yi-Hsiang Yu & Jennifer Van Rij, 2017. "A Survey of WEC Reliability, Survival and Design Practices," Energies, MDPI, vol. 11(1), pages 1-19, December.
- Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
- Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
- José Manuel Oliver & Maria Dolores Esteban & José-Santos López-Gutiérrez & Vicente Negro & Maria Graça Neves, 2021. "Optimizing Wave Overtopping Energy Converters by ANN Modelling: Evaluating the Overtopping Rate Forecasting as the First Step," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
- Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
- Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
- Hong, Yue & Waters, Rafael & Boström, Cecilia & Eriksson, Mikael & Engström, Jens & Leijon, Mats, 2014. "Review on electrical control strategies for wave energy converting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 329-342.
- Claudio Iuppa & Pasquale Contestabile & Luca Cavallaro & Enrico Foti & Diego Vicinanza, 2016. "Hydraulic Performance of an Innovative Breakwater for Overtopping Wave Energy Conversion," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
- Dongsheng Qiao & Rizwan Haider & Jun Yan & Dezhi Ning & Binbin Li, 2020. "Review of Wave Energy Converter and Design of Mooring System," Sustainability, MDPI, vol. 12(19), pages 1-31, October.
More about this item
Keywords
Wave energy harvesting; Flexible membrane; Elastomeric membranes; Dielectric elastomer generators; Fluid–structure interaction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121007590. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.