IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp628-642.html
   My bibliography  Save this article

Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator

Author

Listed:
  • Moretti, Giacomo
  • Malara, Giovanni
  • Scialò, Andrea
  • Daniele, Luca
  • Romolo, Alessandra
  • Vertechy, Rocco
  • Fontana, Marco
  • Arena, Felice

Abstract

This paper introduces a theoretical and experimental study of a wave energy converter (WEC) that combines the two innovative concepts of U-oscillating water column (U-OWC) and dielectric elastomer generator (DEG) power take-off (PTO). The U-OWC is a type of oscillating water column that features a U-shaped duct that is introduced to tune its dynamics to a certain wave period without active means of phase-control. The DEG is a compliant polymeric generator that makes it possible to convert mechanical energy into electrical energy by exploiting the large deformations of elastomeric membranes.

Suggested Citation

  • Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:628-642
    DOI: 10.1016/j.renene.2019.06.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811930905X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Strati, Federica Maria & Malara, Giovanni & Arena, Felice, 2016. "Performance optimization of a U-Oscillating-Water-Column wave energy harvester," Renewable Energy, Elsevier, vol. 99(C), pages 1019-1028.
    2. Malara, G. & Gomes, R.P.F. & Arena, F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2017. "The influence of three-dimensional effects on the performance of U-type oscillating water column wave energy harvesters," Renewable Energy, Elsevier, vol. 111(C), pages 506-522.
    3. Malara, Giovanni & Arena, Felice, 2019. "Response of U-Oscillating Water Column arrays: semi-analytical approach and numerical results," Renewable Energy, Elsevier, vol. 138(C), pages 1152-1165.
    4. Malara, Giovanni & Arena, Felice, 2013. "Analytical modelling of an U-Oscillating Water Column and performance in random waves," Renewable Energy, Elsevier, vol. 60(C), pages 116-126.
    5. Falcão, António F.O. & Gato, Luís M.C. & Henriques, João C.C. & Borges, João E. & Pereiras, Bruno & Castro, Francisco, 2015. "A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters," Energy, Elsevier, vol. 93(P2), pages 2116-2125.
    6. Chiba, S. & Waki, M. & Wada, T. & Hirakawa, Y. & Masuda, K. & Ikoma, T., 2013. "Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators," Applied Energy, Elsevier, vol. 104(C), pages 497-502.
    7. Malara, Giovanni & Romolo, Alessandra & Fiamma, Vincenzo & Arena, Felice, 2017. "On the modelling of water column oscillations in U-OWC energy harvesters," Renewable Energy, Elsevier, vol. 101(C), pages 964-972.
    8. Luca Martinelli & Paolo Pezzutto & Piero Ruol, 2013. "Experimentally Based Model to Size the Geometry of a New OWC Device, with Reference to the Mediterranean Sea Wave Environment," Energies, MDPI, vol. 6(9), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emiliano Renzi & Simone Michele & Siming Zheng & Siya Jin & Deborah Greaves, 2021. "Niche Applications and Flexible Devices for Wave Energy Conversion: A Review," Energies, MDPI, vol. 14(20), pages 1-25, October.
    2. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    3. Moretti, Giacomo & Santos Herran, Miguel & Forehand, David & Alves, Marco & Jeffrey, Henry & Vertechy, Rocco & Fontana, Marco, 2020. "Advances in the development of dielectric elastomer generators for wave energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Kui Di & Kunwei Bao & Haojie Chen & Xinjun Xie & Jianbo Tan & Yixing Shao & Yongxiang Li & Wenjun Xia & Zisheng Xu & Shiju E, 2021. "Dielectric Elastomer Generator for Electromechanical Energy Conversion: A Mini Review," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    6. Abad, Farhad & Lotfian, Saeid & Dai, Saishuai & Zhao, Guangwei & Alarcon, Guillermo Idarraga & Yang, Liu & Huang, Yang & Xiao, Qing & Brennan, Feargal, 2024. "Experimental and computational analysis of elastomer membranes used in oscillating water column WECs," Renewable Energy, Elsevier, vol. 226(C).
    7. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    8. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    9. Wang, Yuhan & Wang, Dongxu & Dong, Sheng, 2022. "A theoretical model for an integrated wave energy extraction system consisting of a heaving buoy and a perforated wall," Renewable Energy, Elsevier, vol. 189(C), pages 1086-1101.
    10. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration," Sustainability, MDPI, vol. 15(10), pages 1-32, May.
    12. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Zhao, Xuanlie & Zhang, Yang & Li, Mingwei & Johanning, Lars, 2020. "Hydrodynamic performance of a Comb-Type Breakwater-WEC system: An analytical study," Renewable Energy, Elsevier, vol. 159(C), pages 33-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    2. Trivedi, Kshma & Koley, Santanu, 2021. "Mathematical modeling of breakwater-integrated oscillating water column wave energy converter devices under irregular incident waves," Renewable Energy, Elsevier, vol. 178(C), pages 403-419.
    3. Malara, Giovanni & Arena, Felice, 2019. "Response of U-Oscillating Water Column arrays: semi-analytical approach and numerical results," Renewable Energy, Elsevier, vol. 138(C), pages 1152-1165.
    4. Scandura, Pietro & Malara, Giovanni & Arena, Felice, 2021. "The inclusion of non-linearities in a mathematical model for U-Oscillating Water Column wave energy converters," Energy, Elsevier, vol. 218(C).
    5. Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
    6. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
    7. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
    8. Güths, A.K. & Teixeira, P.R.F. & Didier, E., 2022. "A novel geometry of an onshore Oscillating Water Column wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 938-949.
    9. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Moretti, Giacomo & Santos Herran, Miguel & Forehand, David & Alves, Marco & Jeffrey, Henry & Vertechy, Rocco & Fontana, Marco, 2020. "Advances in the development of dielectric elastomer generators for wave energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Emiliano Renzi & Simone Michele & Siming Zheng & Siya Jin & Deborah Greaves, 2021. "Niche Applications and Flexible Devices for Wave Energy Conversion: A Review," Energies, MDPI, vol. 14(20), pages 1-25, October.
    13. Deng, Zhengzhi & Wang, Lin & Zhao, Xizeng & Wang, Peng, 2020. "Wave power extraction by a nearshore oscillating water column converter with a surging lip-wall," Renewable Energy, Elsevier, vol. 146(C), pages 662-674.
    14. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    15. Fang He & Mingjia Li & Zhenhua Huang, 2016. "An Experimental Study of Pile-Supported OWC-Type Breakwaters: Energy Extraction and Vortex-Induced Energy Loss," Energies, MDPI, vol. 9(7), pages 1-15, July.
    16. Carrelhas, A.A.D. & Gato, L.M.C. & Morais, F.J.F., 2024. "Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions," Renewable Energy, Elsevier, vol. 220(C).
    17. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    18. García-Díaz, Manuel & Pereiras, Bruno & Miguel-González, Celia & Rodríguez, Laudino & Fernández-Oro, Jesús, 2021. "Design of a new turbine for OWC wave energy converters: The DDT concept," Renewable Energy, Elsevier, vol. 169(C), pages 404-413.
    19. Nicola Delmonte & Eider Robles & Paolo Cova & Francesco Giuliani & François Xavier Faÿ & Joseba Lopez & Piero Ruol & Luca Martinelli, 2020. "An Iterative Refining Approach to Design the Control of Wave Energy Converters with Numerical Modeling and Scaled HIL Testing," Energies, MDPI, vol. 13(10), pages 1-19, May.
    20. Harne, R.L. & Schoemaker, M.E. & Dussault, B.E. & Wang, K.W., 2014. "Wave heave energy conversion using modular multistability," Applied Energy, Elsevier, vol. 130(C), pages 148-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:628-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.