IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp280-294.html
   My bibliography  Save this article

Mathematical modelling of a floating Clam-type wave energy converter

Author

Listed:
  • Zheng, Siming
  • Phillips, John Wilfrid
  • Hann, Martyn
  • Greaves, Deborah

Abstract

In this paper, wave power extraction from a floating Clam-type wave energy converter is investigated. The device is mainly composed of a Clam, which is formed from two pieces of floating flaps hinged at a submerged body. The Clam is closed by a flexible impermeable bag with the two hinged floating flaps kept apart by a Power Take-Off system. As waves propagate through the device, the Clam motion of the device is excited, which can be used to drive the Power Take-Off system to capture wave power. To evaluate the response and also the wave power absorption of the device, a mathematical model is developed based on the linear potential flow theory, in which a generalised mode method is adopted to model the Clam action. Theoretical expressions of the maximum wave power absorption and the corresponding optimised Power Take-Off system and mooring parameters are derived. Good agreement between the present numerical results of the device response and the physical observations is obtained. The validated model is then applied to do a series of case studies. It is revealed that the optimised Power Take-Off stiffness and mooring stiffness are independent of the Power Take-Off damping. The maximum wave power absorption can be achieved when the device is fixed in heave mode or free-floating without any constraints from the mooring system.

Suggested Citation

  • Zheng, Siming & Phillips, John Wilfrid & Hann, Martyn & Greaves, Deborah, 2023. "Mathematical modelling of a floating Clam-type wave energy converter," Renewable Energy, Elsevier, vol. 210(C), pages 280-294.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:280-294
    DOI: 10.1016/j.renene.2023.04.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simone Michele & Federica Buriani & Emiliano Renzi & Marijn van Rooij & Bayu Jayawardhana & Antonis I. Vakis, 2020. "Wave Energy Extraction by Flexible Floaters," Energies, MDPI, vol. 13(23), pages 1-24, November.
    2. Li, Ai-jun & Liu, Yong & Wang, Xin-yu, 2022. "Hydrodynamic performance of a horizontal cylinder wave energy converter in front of a partially reflecting vertical wall," Renewable Energy, Elsevier, vol. 194(C), pages 1034-1047.
    3. Emiliano Renzi & Simone Michele & Siming Zheng & Siya Jin & Deborah Greaves, 2021. "Niche Applications and Flexible Devices for Wave Energy Conversion: A Review," Energies, MDPI, vol. 14(20), pages 1-25, October.
    4. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    5. Faraggiana, E. & Whitlam, C. & Chapman, J. & Hillis, A. & Roesner, J. & Hann, M. & Greaves, D. & Yu, Y.-H. & Ruehl, K. & Masters, I. & Foster, G. & Stockman, G., 2020. "Computational modelling and experimental tank testing of the multi float WaveSub under regular wave forcing," Renewable Energy, Elsevier, vol. 152(C), pages 892-909.
    6. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    7. Harne, R.L. & Schoemaker, M.E. & Dussault, B.E. & Wang, K.W., 2014. "Wave heave energy conversion using modular multistability," Applied Energy, Elsevier, vol. 130(C), pages 148-156.
    8. Asai, Takehiko & Sugiura, Keita, 2021. "Numerical evaluation of a two-body point absorber wave energy converter with a tuned inerter," Renewable Energy, Elsevier, vol. 171(C), pages 217-226.
    9. Zheng, Siming & Zhang, Yongliang & Iglesias, Gregorio, 2020. "Concept and performance of a novel wave energy converter: Variable Aperture Point-Absorber (VAPA)," Renewable Energy, Elsevier, vol. 153(C), pages 681-700.
    10. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    11. Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    13. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benites-Munoz, Daniela & Huang, Luofeng & Thomas, Giles, 2024. "Optimal array arrangement of oscillating wave surge converters: An analysis based on three devices," Renewable Energy, Elsevier, vol. 222(C).
    2. Zhou, Binzhen & Hu, Jianjian & Wang, Yu & Jin, Peng & Jing, Fengmei & Ning, Dezhi, 2023. "Coupled dynamic and power generation characteristics of a hybrid system consisting of a semi-submersible wind turbine and an array of heaving wave energy converters," Renewable Energy, Elsevier, vol. 214(C), pages 23-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    2. Wei, Yujia & Wang, Chao & Chen, Wenchuang & Huang, Luofeng, 2024. "Array analysis on a seawall type of deformable wave energy converters," Renewable Energy, Elsevier, vol. 225(C).
    3. Emiliano Renzi & Simone Michele & Siming Zheng & Siya Jin & Deborah Greaves, 2021. "Niche Applications and Flexible Devices for Wave Energy Conversion: A Review," Energies, MDPI, vol. 14(20), pages 1-25, October.
    4. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    5. Zhou, Binzhen & Zheng, Zhi & Zhang, Qi & Jin, Peng & Wang, Lei & Ning, Dezhi, 2023. "Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters," Energy, Elsevier, vol. 271(C).
    6. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    7. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    8. Zhou, Binzhen & Wang, Yu & Zheng, Zhi & Jin, Peng & Ning, Dezhi, 2023. "Power generation and wave attenuation of a hybrid system involving a heaving cylindrical wave energy converter in front of a parabolic breakwater," Energy, Elsevier, vol. 282(C).
    9. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Zhao, Huai & Zhang, Haicheng & Bi, Rengui & Xi, Ru & Xu, Daolin & Shi, Qijia & Wu, Bo, 2020. "Enhancing efficiency of a point absorber bistable wave energy converter under low wave excitations," Energy, Elsevier, vol. 212(C).
    11. Duan, Derong & Lin, Xiangyang & Wang, Muhao & Liu, Xia & Gao, Changqing & Zhang, Hui & Yang, Xuefeng, 2024. "Study on energy conversion efficiency of wave generation in shake plate mode," Energy, Elsevier, vol. 290(C).
    12. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    13. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    14. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    15. Molina–Salas, A. & Longo, S. & Clavero, M. & Moñino, A., 2023. "Theoretical approach to the scale effects of an OWC device," Renewable Energy, Elsevier, vol. 219(P2).
    16. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    18. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    19. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    20. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:280-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.