IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp235-247.html
   My bibliography  Save this article

Survivability of wave energy converters using CFD

Author

Listed:
  • Ransley, E.J.
  • Greaves, D.
  • Raby, A.
  • Simmonds, D.
  • Hann, M.

Abstract

The survivability of Wave Energy Converters (WECs) in extreme waves is a critical issue faced by developers; typically assessed via small scale physical experiments with considerable uncertainties. Until recently, confidence in the ability of numerical tools to reproduce extreme wave events and their interaction with floating structures has been insufficient to warrant their use in routine design processes. In this work a fully nonlinear, coupled tool for simulating focused wave impacts on generic WEC hull forms is described and compared with physical measurements. Two separate design waves, based on the 100 year wave at Wave Hub and using the NewWave formulation, have been reproduced numerically as have experiments in which a fixed truncated circular cylinder and a floating hemispherical-bottomed buoy are subject to these focused wave events. The numerical model is shown to reproduce the wave events well with some inaccuracies observed in shallower water depths. The results for pressure and run-up on the cylinder surface, as well as the high-order free-surface behaviour, also compare well with experimental results. The floating buoy's motion and mooring load are reproduced exceptionally well showing that the tool presented here can be used to assess WEC survivability and complement existing physical modelling.

Suggested Citation

  • Ransley, E.J. & Greaves, D. & Raby, A. & Simmonds, D. & Hann, M., 2017. "Survivability of wave energy converters using CFD," Renewable Energy, Elsevier, vol. 109(C), pages 235-247.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:235-247
    DOI: 10.1016/j.renene.2017.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domino, Stefan P. & Horne, Wyatt James, 2022. "Development and deployment of a credible unstructured, six-DOF, implicit low-Mach overset simulation tool for wave energy applications," Renewable Energy, Elsevier, vol. 199(C), pages 1060-1077.
    2. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    3. Pierre-Henri Musiedlak & Edward J. Ransley & Martyn Hann & Benjamin Child & Deborah M. Greaves, 2020. "Time-Splitting Coupling of WaveDyn with OpenFOAM by Fidelity Limit Identified from a WEC in Extreme Waves," Energies, MDPI, vol. 13(13), pages 1-26, July.
    4. Oliveira, D. & Lopes de Almeida, J.P.P.G. & Santiago, A. & Rigueiro, C., 2022. "Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter," Renewable Energy, Elsevier, vol. 199(C), pages 226-245.
    5. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    7. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Sheng, Wanan, 2019. "Wave energy conversion and hydrodynamics modelling technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 482-498.
    9. Shayan Ramezanzadeh & Murat Ozbulut & Mehmet Yildiz, 2022. "A Numerical Investigation of the Energy Efficiency Enhancement of Oscillating Water Column Wave Energy Converter Systems," Energies, MDPI, vol. 15(21), pages 1-20, November.
    10. Brecht Devolder & Vasiliki Stratigaki & Peter Troch & Pieter Rauwoens, 2018. "CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves," Energies, MDPI, vol. 11(3), pages 1-23, March.
    11. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    12. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    13. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    14. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    15. Ryan G. Coe & Yi-Hsiang Yu & Jennifer Van Rij, 2017. "A Survey of WEC Reliability, Survival and Design Practices," Energies, MDPI, vol. 11(1), pages 1-19, December.
    16. Gael Verao Fernández & Vasiliki Stratigaki & Peter Troch, 2019. "Irregular Wave Validation of a Coupling Methodology for Numerical Modelling of Near and Far Field Effects of Wave Energy Converter Arrays," Energies, MDPI, vol. 12(3), pages 1-19, February.
    17. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    18. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.
    19. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    20. Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.
    21. Linnea Sjökvist & Malin Göteman, 2017. "Peak Forces on Wave Energy Linear Generators in Tsunami and Extreme Waves," Energies, MDPI, vol. 10(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:235-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.