IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v96y2016ipap531-547.html
   My bibliography  Save this article

Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter

Author

Listed:
  • Vakis, Antonis I.
  • Anagnostopoulos, John S.

Abstract

A multi-pump, multi-piston power take-off wave energy converter (MP2PTO WEC) has been proposed for use with a novel renewable energy harvester termed the Ocean Grazer. The MP2PTO WEC utilizes wave motion to pump–via buoys connected to pistons–working fluid within a closed circuit and store it as potential energy that can be converted to electricity via turbines. This paper introduces the mechanical design and model-based performance prediction of a single-piston pump that constitutes the basic building block for the MP2PTO WEC. Results provide preliminary validation of aqueous lubrication as a viable means of reducing friction and wear, suggesting that water-based hydraulic fluids can prohibit solid contact at the piston-cylinder interface while reducing volumetric leakage, and allowing for an estimation of the energy extraction efficiency for the mechanical pumping system. Pending more thorough and extended tribological investigations using the methodology introduced in this paper, findings suggest that the overall system efficiency will be dictated by the hydrodynamics of the buoys actuating the pumping system.

Suggested Citation

  • Vakis, Antonis I. & Anagnostopoulos, John S., 2016. "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter," Renewable Energy, Elsevier, vol. 96(PA), pages 531-547.
  • Handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:531-547
    DOI: 10.1016/j.renene.2016.04.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2010. "Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 35(11), pages 2590-2601.
    2. Saeid, Sanaz & Al-Khoury, Rafid & Nick, Hamidreza M. & Hicks, Michael A., 2015. "A prototype design model for deep low-enthalpy hydrothermal systems," Renewable Energy, Elsevier, vol. 77(C), pages 408-422.
    3. Li, Guang & Belmont, Mike R., 2014. "Model predictive control of sea wave energy converters – Part II: The case of an array of devices," Renewable Energy, Elsevier, vol. 68(C), pages 540-549.
    4. Li, Guang & Belmont, Michael R., 2014. "Model predictive control of sea wave energy converters – Part I: A convex approach for the case of a single device," Renewable Energy, Elsevier, vol. 69(C), pages 453-463.
    5. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    2. Wei, Y. & Barradas-Berglind, J.J. & Yu, Z. & van Rooij, M. & Prins, W.A. & Jayawardhana, B. & Vakis, A.I., 2019. "Frequency-domain hydrodynamic modelling of dense and sparse arrays of wave energy converters," Renewable Energy, Elsevier, vol. 135(C), pages 775-788.
    3. Sun, Pengyuan & Liu, Senming & He, Hongzhou & Zhao, Yingru & Zheng, Songgen & Chen, Hu & Yang, Shaohui, 2021. "Simulated and experimental investigation of a floating-array-buoys wave energy converter with single-point mooring," Renewable Energy, Elsevier, vol. 176(C), pages 637-650.
    4. Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.
    5. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    2. Ni, Wenchi & Zhang, Xu & Zhang, Wei & Liang, Shuangling, 2021. "Numerical investigation of adaptive damping control for raft-type wave energy converters," Renewable Energy, Elsevier, vol. 175(C), pages 520-531.
    3. Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Collective control in arrays of wave energy converters," Renewable Energy, Elsevier, vol. 156(C), pages 361-369.
    4. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    5. Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Time-varying linear quadratic Gaussian optimal control for three-degree-of-freedom wave energy converters," Renewable Energy, Elsevier, vol. 149(C), pages 217-225.
    6. Del Pozo Gonzalez, Hector & Bianchi, Fernando D. & Dominguez-Garcia, Jose Luis & Gomis-Bellmunt, Oriol, 2023. "Co-located wind-wave farms: Optimal control and grid integration," Energy, Elsevier, vol. 272(C).
    7. Li, Liang & Gao, Yan, 2023. "Development of a real-time wave energy control with consideration of control latency," Energy, Elsevier, vol. 277(C).
    8. Faÿ, François-Xavier & Henriques, João C. & Kelly, James & Mueller, Markus & Abusara, Moahammad & Sheng, Wanan & Marcos, Marga, 2020. "Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant," Renewable Energy, Elsevier, vol. 146(C), pages 2766-2784.
    9. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Guo, Bingyong & Patton, Ron J. & Jin, Siya & Lan, Jianglin, 2018. "Numerical and experimental studies of excitation force approximation for wave energy conversion," Renewable Energy, Elsevier, vol. 125(C), pages 877-889.
    11. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    12. Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
    13. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    14. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    15. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    16. O'Sullivan, Adrian C.M. & Lightbody, Gordon, 2017. "Co-design of a wave energy converter using constrained predictive control," Renewable Energy, Elsevier, vol. 102(PA), pages 142-156.
    17. Shi, Xueli & Liang, Bingchen & Li, Shaowu & Zhao, Jianchun & Wang, Junhui & Wang, Zhenlu, 2024. "Wave energy resource classification system for the China East Adjacent Seas based on multivariate clustering," Energy, Elsevier, vol. 299(C).
    18. Zhang, Zhenquan & Qin, Jian & Zhang, Yuchen & Huang, Shuting & Liu, Yanjun & Xue, Gang, 2023. "Cooperative model predictive control for Wave Energy Converter arrays," Renewable Energy, Elsevier, vol. 219(P1).
    19. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    20. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:96:y:2016:i:pa:p:531-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.