IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6681d10.1038_30193.html
   My bibliography  Save this article

Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer

Author

Listed:
  • Ned Bowden

    (Harvard University)

  • Scott Brittain

    (Harvard University)

  • Anthony G. Evans

    (Harvard University)

  • John W. Hutchinson

    (Harvard University)

  • George M. Whitesides

    (Harvard University)

Abstract

Spontaneous generation of complex order in apparently simple systems is both arresting and potentially useful1,2,3,4,5,6,7,8,9,10,11. Here we describe the appearance of complex, ordered structures induced by the buckling of thin metal films owing to thermal contraction of an underlying substrate. We deposit the films from the vapour phase on a thermally expanded polymer (polydimethylsiloxane, PDMS). Subsequent cooling of the polymer creates compressive stress in the metal film that is relieved by buckling with a uniform wavelength of 20–50 micrometres. The waves can be controlled and orientated by relief structures in the surface of the polymer, which can set up intricate, ordered patterns over large areas. We can account qualitatively for the size and form of the patterned features in terms of the non-uniform stresses developed in the film near steps on the polymer substrate. This patterning process may find applications in optical devices such as diffraction gratings and optical sensors, and as the basis for methods of strain analysis in materials.

Suggested Citation

  • Ned Bowden & Scott Brittain & Anthony G. Evans & John W. Hutchinson & George M. Whitesides, 1998. "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature, Nature, vol. 393(6681), pages 146-149, May.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6681:d:10.1038_30193
    DOI: 10.1038/30193
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/30193
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/30193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung Yun Son & Giwon Lee & Hongyu Wang & Stephanie Samson & Qingshan Wei & Yong Zhu & Wei You, 2022. "Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Natarajan Shanmugam & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Pitchandi Kasiviswanathan & Narottam Das, 2020. "Anti-Reflective Coating Materials: A Holistic Review from PV Perspective," Energies, MDPI, vol. 13(10), pages 1-93, May.
    4. Zehong Wang & Tiantian Li & Yixiang Chen & Jin Li & Xiaodong Ma & Jie Yin & Xuesong Jiang, 2022. "Photodimerization induced hierarchical and asymmetric iontronic micropatterns," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6681:d:10.1038_30193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.