IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i8p4001-4044d27806.html
   My bibliography  Save this article

Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

Author

Listed:
  • Rico H. Hansen

    (Department of Energy Technology, Aalborg University, Pontoppidanstrade 101, Aalborg DK-9220, Denmark
    Wavestar, Park Alle 350A, Broendby DK-2605, Denmark)

  • Morten M. Kramer

    (Wavestar, Park Alle 350A, Broendby DK-2605, Denmark)

  • Enrique Vidal

    (Wavestar, Park Alle 350A, Broendby DK-2605, Denmark)

Abstract

The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC) is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

Suggested Citation

  • Rico H. Hansen & Morten M. Kramer & Enrique Vidal, 2013. "Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-44, August.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:4001-4044:d:27806
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/8/4001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/8/4001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseba Lasa & Juan Carlos Antolin & Carlos Angulo & Patxi Estensoro & Maider Santos & Pierpaolo Ricci, 2012. "Design, Construction and Testing of a Hydraulic Power Take-Off for Wave Energy Converters," Energies, MDPI, vol. 5(6), pages 1-23, June.
    2. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    2. Yubo Niu & Xingyuan Gu & Xuhui Yue & Yang Zheng & Peijie He & Qijuan Chen, 2022. "Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-15, February.
    3. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    4. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    5. Juan Carlos Antolín-Urbaneja & Alain Cortés & Itziar Cabanes & Patxi Estensoro & Joseba Lasa & Marga Marcos, 2015. "Modeling Innovative Power Take-Off Based on Double-Acting Hydraulic Cylinders Array for Wave Energy Conversion," Energies, MDPI, vol. 8(3), pages 1-38, March.
    6. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    7. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    8. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    9. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    10. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    11. Shi, Xueli & Liang, Bingchen & Li, Shaowu & Zhao, Jianchun & Wang, Junhui & Wang, Zhenlu, 2024. "Wave energy resource classification system for the China East Adjacent Seas based on multivariate clustering," Energy, Elsevier, vol. 299(C).
    12. Wang, Daming & Jin, Siya & Hann, Martyn & Conley, Daniel & Collins, Keri & Greaves, Deborah, 2023. "Power output estimation of a two-body hinged raft wave energy converter using HF radar measured representative sea states at Wave Hub in the UK," Renewable Energy, Elsevier, vol. 202(C), pages 103-115.
    13. Ilyas, Arqam & Kashif, Syed A.R. & Saqib, Muhammad A. & Asad, Muhammad M., 2014. "Wave electrical energy systems: Implementation, challenges and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 260-268.
    14. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    15. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    16. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    17. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie, 2024. "An optimization approach for geometry design of multi-axis wave energy converter," Energy, Elsevier, vol. 301(C).
    18. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    19. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    20. Yu Zhou & Chongwei Zhang & Dezhi Ning, 2018. "Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter," Energies, MDPI, vol. 11(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:4001-4044:d:27806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.