IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v137y2021ics1364032120307516.html
   My bibliography  Save this article

Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements

Author

Listed:
  • Alves, Luís
  • Pereira, Vítor
  • Lagarteira, Tiago
  • Mendes, Adélio

Abstract

Decarbonization of the energy sector is a topic of paramount importance to avoid irreversible global warming. Hydrogen has been considered as the most suitable option to replace fossil fuels in industrial, residential and transport applications. However, hydrogen production has been almost limited to the reforming of hydrocarbons, which release large amounts of CO2, thus requiring several downstream purification processes.

Suggested Citation

  • Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307516
    DOI: 10.1016/j.rser.2020.110465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120307516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aleknaviciute, I. & Karayiannis, T.G. & Collins, M.W. & Xanthos, C., 2013. "Methane decomposition under a corona discharge to generate COx-free hydrogen," Energy, Elsevier, vol. 59(C), pages 432-439.
    2. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    3. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
    4. Ashik, U.P.M. & Wan Daud, W.M.A. & Hayashi, Jun-ichiro, 2017. "A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 743-767.
    5. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    6. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    7. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    8. Ye, Run-Ping & Gong, Weibo & Sun, Zhao & Sheng, Qingtao & Shi, Xiufeng & Wang, Tongtong & Yao, Yi & Razink, Joshua J. & Lin, Ling & Zhou, Zhangfeng & Adidharma, Hertanto & Tang, Jinke & Fan, Maohong &, 2019. "Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions," Energy, Elsevier, vol. 188(C).
    9. Christiana Figueres & Hans Joachim Schellnhuber & Gail Whiteman & Johan Rockström & Anthony Hobley & Stefan Rahmstorf, 2017. "Three years to safeguard our climate," Nature, Nature, vol. 546(7660), pages 593-595, June.
    10. Lazzaroni, E. & Elsholkami, M. & Martelli, E. & Elkamel, A., 2017. "Design and simulation of a petcoke gasification polygeneration plant integrated with a bitumen extraction and upgrading facility and net energy analysis," Energy, Elsevier, vol. 141(C), pages 880-891.
    11. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    12. Cui, Qun & Tao, Gang & Chen, Haijun & Guo, Xinyue & Yao, Huqing, 2005. "Environmentally benign working pairs for adsorption refrigeration," Energy, Elsevier, vol. 30(2), pages 261-271.
    13. Rudy, Wojciech & Zbikowski, Mateusz & Teodorczyk, Andrzej, 2016. "Detonations in hydrogen-methane-air mixtures in semi confined flat channels," Energy, Elsevier, vol. 116(P3), pages 1479-1483.
    14. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 138(C), pages 776-784.
    15. Jensen, Ida Græsted & Skovsgaard, Lise, 2017. "The impact of CO2-costs on biogas usage," Energy, Elsevier, vol. 134(C), pages 289-300.
    16. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    17. Zhang, Xiang & Kätelhön, Arne & Sorda, Giovanni & Helmin, Marta & Rose, Marcus & Bardow, André & Madlener, Reinhard & Palkovits, Regina & Mitsos, Alexander, 2018. "CO2 mitigation costs of catalytic methane decomposition," Energy, Elsevier, vol. 151(C), pages 826-838.
    18. Ben Marzeion & Georg Kaser & Fabien Maussion & Nicolas Champollion, 2018. "Limited influence of climate change mitigation on short-term glacier mass loss," Nature Climate Change, Nature, vol. 8(4), pages 305-308, April.
    19. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    20. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    21. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    22. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    23. Kisiela, Anna M. & Czajka, Krzysztof M. & Moroń, Wojciech & Rybak, Wiesław & Andryjowicz, Czesław, 2016. "Unburned carbon from lignite fly ash as an adsorbent for SO2 removal," Energy, Elsevier, vol. 116(P3), pages 1454-1463.
    24. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David, 2014. "Synthetic fuel production costs by means of solid oxide electrolysis cells," Energy, Elsevier, vol. 76(C), pages 104-113.
    25. Abdul Ghani, Ahmad & Torabi, Farshid & Ibrahim, Hussameldin, 2018. "Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses," Energy, Elsevier, vol. 144(C), pages 129-145.
    26. Gokon, Nobuyuki & Kumaki, Satoshi & Miyaguchi, Yosuke & Bellan, Selvan & Kodama, Tatsuya & Cho, Hyunseok, 2019. "Development of a 5kWth internally circulating fluidized bed reactor containing quartz sand for continuously-fed coal-coke gasification and a beam-down solar concentrating system," Energy, Elsevier, vol. 166(C), pages 1-16.
    27. Azimi, Seyyed Shahabeddin & Kalbasi, Mansour, 2018. "Three-phase modeling of dehydrogenation of isobutane to isobutene in a fluidized bed reactor: Effect of operating conditions on the energy consumption," Energy, Elsevier, vol. 149(C), pages 250-261.
    28. Ashik, U.P.M. & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 221-256.
    29. Tseng, Phillip & Lee, John & Friley, Paul, 2005. "A hydrogen economy: opportunities and challenges," Energy, Elsevier, vol. 30(14), pages 2703-2720.
    30. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    31. Bernard Morel, 1979. "1980-2000," Post-Print hal-04516951, HAL.
    32. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Dongdong & Wang, Shizhang & Dong, Heming & Wang, Junjie & Wang, Fuhua & Shang, Qi & Zhao, Yijun & Sun, Shaozeng, 2024. "Mechanism on CMD reaction regulated by supports and promoters of Fe-based catalysts," Energy, Elsevier, vol. 298(C).
    2. Chien, FengSheng & Vu, Trong Lam & Hien Phan, Thi Thu & Van Nguyen, Sang & Viet Anh, Nguyen Ho & Ngo, Thanh Quang, 2023. "Zero-carbon energy transition in ASEAN countries: The role of carbon finance, carbon taxes, and sustainable energy technologies," Renewable Energy, Elsevier, vol. 212(C), pages 561-569.
    3. Tamás I. Korányi & Miklós Németh & Andrea Beck & Anita Horváth, 2022. "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production," Energies, MDPI, vol. 15(17), pages 1-14, August.
    4. Raza, Jehangeer & Khoja, Asif Hussain & Anwar, Mustafa & Saleem, Faisal & Naqvi, Salman Raza & Liaquat, Rabia & Hassan, Muhammad & Javaid, Rahat & Qazi, Umair Yaqub & Lumbers, Brock, 2022. "Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raza, Jehangeer & Khoja, Asif Hussain & Anwar, Mustafa & Saleem, Faisal & Naqvi, Salman Raza & Liaquat, Rabia & Hassan, Muhammad & Javaid, Rahat & Qazi, Umair Yaqub & Lumbers, Brock, 2022. "Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    4. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    5. Sorknæs, P. & Lund, Henrik & Skov, I.R. & Djørup, S. & Skytte, K. & Morthorst, P.E. & Fausto, F., 2020. "Smart Energy Markets - Future electricity, gas and heating markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
    7. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    9. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2020. "Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries," Energy, Elsevier, vol. 208(C).
    10. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    11. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    12. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    13. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    14. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    15. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    16. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    17. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    18. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    19. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    20. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120307516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.