IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v188y2019ics0360544219317542.html
   My bibliography  Save this article

Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions

Author

Listed:
  • Ye, Run-Ping
  • Gong, Weibo
  • Sun, Zhao
  • Sheng, Qingtao
  • Shi, Xiufeng
  • Wang, Tongtong
  • Yao, Yi
  • Razink, Joshua J.
  • Lin, Ling
  • Zhou, Zhangfeng
  • Adidharma, Hertanto
  • Tang, Jinke
  • Fan, Maohong
  • Yao, Yuan-Gen

Abstract

Nowadays more and more significant technologies have been developing to save energy and reduce emissions. CO2 methanation has been an attractive process to reduce CO2-emissions since it consumes CO2 with H2 derived from renewable energy sources to produce CH4. However, the poor stability of Ni-based catalyst for CO2 methanation is still challenging. Herein, two Ni/SiO2 catalysts with different structure and catalytic properties were prepared by different methods. The Ni/SiO2-AEM nanocatalyst with a lamellar structure of nickel phyllosilicate was synthesized by a facile ammonia-evaporation method (AEM), which can conveniently and uniformly disperse nickel species on SiO2. Upon reduction of nickel phyllosilicate, it can disperse and confine small sized Ni particles (4.2 nm) in the silica support with a high surface area of 446.3 m2/g, leading to the Ni/SiO2-AEM catalyst achieving a high yield of methane with long-term stability of 100 h under the GHSV of 10,000 mL/(gcat h) and another 60 h with the GHSV increased to 30,000 mL/(gcat h) at 370 °C. In comparison, the Ni/SiO2-IM catalyst prepared by the impregnation method obtained lower yield of methane and worse stability under identical conditions. The results indicate that the catalyst with high surface area and strong metal-support interactions can improve stability.

Suggested Citation

  • Ye, Run-Ping & Gong, Weibo & Sun, Zhao & Sheng, Qingtao & Shi, Xiufeng & Wang, Tongtong & Yao, Yi & Razink, Joshua J. & Lin, Ling & Zhou, Zhangfeng & Adidharma, Hertanto & Tang, Jinke & Fan, Maohong &, 2019. "Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions," Energy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317542
    DOI: 10.1016/j.energy.2019.116059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219317542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yu & Liu, Jing & Shen, Weifeng & Li, Jie & Chien, I-Lung, 2018. "High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming," Energy, Elsevier, vol. 158(C), pages 820-829.
    2. Veselovskaya, Janna V. & Parunin, Pavel D. & Netskina, Olga V. & Kibis, Lidiya S. & Lysikov, Anton I. & Okunev, Aleksey G., 2018. "Catalytic methanation of carbon dioxide captured from ambient air," Energy, Elsevier, vol. 159(C), pages 766-773.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soohyun Kim & Yunxia Yang & Renata Lippi & Hokyung Choi & Sangdo Kim & Donghyuk Chun & Hyuk Im & Sihyun Lee & Jiho Yoo, 2021. "Low-Rank Coal Supported Ni Catalysts for CO 2 Methanation," Energies, MDPI, vol. 14(8), pages 1-13, April.
    2. Nam, Hyungseok & Kim, Jung Hwan & Kim, Hana & Kim, Min Jae & Jeon, Sang-Goo & Jin, Gyoung-Tae & Won, Yooseob & Hwang, Byung Wook & Lee, Seung-Yong & Baek, Jeom-In & Lee, Doyeon & Seo, Myung Won & Ryu,, 2021. "CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis," Energy, Elsevier, vol. 214(C).
    3. Martyna Przydacz & Marcin Jędrzejczyk & Jacek Rogowski & Małgorzata Szynkowska-Jóźwik & Agnieszka M. Ruppert, 2020. "Highly Efficient Production of DMF from Biomass-Derived HMF on Recyclable Ni-Fe/TiO 2 Catalysts," Energies, MDPI, vol. 13(18), pages 1-14, September.
    4. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Ahmed Aheed Ali Mohammed & Mohammed Ali H Saleh Saad & Anand Kumar & Mohammed J Al‐Marri, 2020. "Synthesis of fumed silica supported Ni catalyst for carbon dioxide conversion to methane," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 715-724, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    2. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    3. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    4. Chistyakov, A.V. & Nikolaev, S.A. & Zharova, P.A. & Tsodikov, M.V. & Manenti, F., 2019. "Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst," Energy, Elsevier, vol. 166(C), pages 569-576.
    5. Pérez Sánchez, Jordán & Aguillón Martínez, Javier Eduardo & Mazur Czerwiec, Zdzislaw & Zavala Guzmán, Alan Martín, 2019. "Theoretical assessment of integration of CCS in the Mexican electrical sector," Energy, Elsevier, vol. 167(C), pages 828-840.
    6. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and env," Applied Energy, Elsevier, vol. 340(C).
    7. Yao, Ling & Wang, Feng & Wang, Long & Wang, Guoqiang, 2019. "Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production," Energy, Elsevier, vol. 175(C), pages 986-997.
    8. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    9. Mejía-Botero, Cristian & Echeverri-Uribe, Camilo & Ferrer-Ruiz, Juan E. & Amell, Andrés A., 2023. "Effect of preheat temperature, pressure, and residence time on methanation performance," Energy, Elsevier, vol. 269(C).
    10. Ray, Debjyoti & Nepak, Devadutta & Vinodkumar, T. & Subrahmanyam, Ch., 2019. "g-C3N4 promoted DBD plasma assisted dry reforming of methane," Energy, Elsevier, vol. 183(C), pages 630-638.
    11. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Dhir, Amit, 2019. "Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle," Energy, Elsevier, vol. 172(C), pages 733-739.
    12. Qiu, Fei & Sun, Zhen & Li, Huiping & Qian, Qian, 2023. "Process simulation and multi-aspect analysis of methanol production through blast furnace gas and landfill gas," Energy, Elsevier, vol. 285(C).
    13. Xie, Xuanlan & Li, Chang & Lu, Zhiheng & Wang, Yishuang & Yang, Wenqiang & Chen, Mingqiang & Li, Wenzhi, 2024. "Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.